Startseite Preparing conductive polymer-based adsorbent with better cupric ion adsorption efficiency by monomer precursor cross-linking method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparing conductive polymer-based adsorbent with better cupric ion adsorption efficiency by monomer precursor cross-linking method

  • Keke Jia , Kamila Mamat , Nasiman Tuerxun und Arzugul Muslim ORCID logo EMAIL logo
Veröffentlicht/Copyright: 26. April 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Conductive polymer-based adsorbents have showed excellent heavy metal ion removing capabilities. Crosslinking modification is one of the feasible methods to further improve their properties. To make use of the advantages of monomer precursor method over the polymer precursor method in forming dense interpenetrating networks, and then optimizing the surface structure of materials and providing more adsorption sites, the mesoporous cross-linked poly-o-phenylenediamine (M-CR-PoPD) prepared by using the former one and used in removing Cu2+ from aqueous solution. The FTIR results showed that the monomer was successfully crosslinked and polymerized. The loosely packed target product with a hierarchical pore structure distribution was successfully formed. The maximum adsorption capacity of 105.18 mg g−1 was obtained at 25 °C after 3 h of adsorption when M-CR-PoPD prepared at the reaction time of 6 h using anhydrous ethanol as solvent and trimethylolpropane-tris(3-aziridinyl) propionate as crosslinking agent. This value reached the optimum Cu2+ removal capability of reported PoPD-based adsorbents. According to EDX, FTIR, and XPS data before and after adsorption, the possible adsorption mechanism based on the cation-π interaction and the formation of Cu–N bonds was proposed. These results could help develop more effective conductive polymer-based adsorbents to remove Cu2+ from wastewater.


Corresponding author: Arzugul Muslim, College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China; and Xinjiang Key Laboratory of Energy Storage and Photoelectric Catalytic Materials, Urumqi, Xinjiang 830054, China, E-mail:
Keke Jia and Kamila Mamat contributed equally to this work.

Funding source: Special Project for Tianshan Youth Plan in 2020

Award Identifier / Grant number: 2020Q018

Acknowledgments

Thanks to Dariya Habul and Balnur Hajimhan for their participation in the implementation of the experiment.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. All authors contributed to the study conception and design. Material preparation, data collection and the adsorption experiment were performed by Keke Jia, Kamila Mamat, Dariya Habul, and Balnur Hajimhan. The synthesis and the first draft of the manuscript were written by Keke Jia and Kamila Mamat, the analysis and experimental design carried out by Nasiman Tuerxun and Arzugul Muslim, draft revision was performed by Arzugul Muslim, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

  3. Competing interests: The authors have no competing interests to disclose.

  4. Research funding: The authors would like to thank for the financial support from Special Project for Tianshan Youth Plan in 2020 (2020Q018).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Kakoria, A.; Sinha-Ray, S.; Sinha-Ray, S. Industrially Scalable Chitosan/nylon-6 (CS/N) Nanofiber-Based Reusable Adsorbent for Efficient Removal of Heavy Metal from Water. Polymer 2021, 213, 123333; https://doi.org/10.1016/j.polymer.2020.123333.Suche in Google Scholar

2. Sun, H.; Ji, Z.; He, Y.; Wang, L.; Zhan, J.; Chen, L.; Zhao, Y. Preparation of PAMAM Modified PVDF Membrane and its Adsorption Performance for Copper Ions. Environ. Res. 2022, 204, 111943; https://doi.org/10.1016/j.envres.2021.111943.Suche in Google Scholar PubMed

3. Hu, X.; Qu, Y.; Yao, L.; Zhang, Z.; Tan, G.; Bai, C. Boosted Simultaneous Removal of Chlortetracycline and Cu (II) by Litchi Leaves Biochar: Influence of pH, Ionic Strength, and Background Electrolyte Ions. Environ. Sci. Pollut. Res. 2024; https://doi.org/10.1007/s11356-023-31770-4.Suche in Google Scholar PubMed

4. Qi, W.; Wang, Y.; Ji, M.; Zhao, Y.; Zhang, Z. Highly Efficient Adsorption of Cr(VI) by Sakura Leaves from Aqueous Solution. Chem. Lett. 2015, 44, 697–699; https://doi.org/10.1246/cl.150035.Suche in Google Scholar

5. Zare, E. N.; Motahari, A.; Sillanpää, M. Nanoadsorbents Based on Conducting Polymer Nanocomposites with Main Focus on Polyaniline and its Derivatives for Removal of Heavy Metal Ions/Dyes: A Review. Environ. Res. 2018, 162, 173–195; https://doi.org/10.1016/j.envres.2017.12.025.Suche in Google Scholar PubMed

6. Karthik, R.; Meenakshi, S. Removal of Pb(II) and Cd(II) Ions from Aqueous Solution Using Polyaniline Grafted Chitosan. Chem. Eng. J. 2015, 263, 168–177; https://doi.org/10.1016/j.cej.2014.11.015.Suche in Google Scholar

7. Momina, A. K. Study of Different Polymer Nanocomposites and Their Pollutant Removal Efficiency: Review. Polymer 2021, 217, 123453; https://doi.org/10.1016/j.polymer.2021.123453.Suche in Google Scholar

8. Taghizadeh, A.; Taghizadeh, M.; Jouyandeh, M.; Yazdi, M. K.; Zarrintaj, P.; Saeb, M. R.; Lima, E. C.; Gupta, V. K. Conductive Polymers in Water Treatment: A Review. J. Mol. Liq. 2020, 312, 113447; https://doi.org/10.1016/j.molliq.2020.113447.Suche in Google Scholar

9. Dai, S.; Peng, B.; Zhang, L.; Chai, L.; Wang, T.; Meng, Y.; Li, X. G.; Wang, H.; Luo, J. Sustainable Synthesis of Hollow Cu-Loaded Poly(m-Phenylenediamine) Particles and Their Application for Arsenic Removal. RSC Adv. 2015, 5, 29965–29974; https://doi.org/10.1039/c4ra16499g.Suche in Google Scholar

10. Meng, Y.; Xiao, L.; Muslim, A.; Hojiahmat, M. Improving the Adsorption of Poly(o-Phenylenediamine) to Heavy Metal Ions in Aqueous Solution through its Composite with Carbon Dots. J. Polym. Res. 2021, 28, 404; https://doi.org/10.1007/s10965-021-02739-z.Suche in Google Scholar

11. Meng, Y.; Zhong, Q.; Muslim, A. Performance of Poly-O-Phenylenediamine and its Carbon Dot Composite Electrode in the Removal of Cu2+ from its Aqueous Solution. Funct. Mater. Lett. 2021, 14, 2151037; https://doi.org/10.1142/s1793604721510371.Suche in Google Scholar

12. Min, Y. L.; Wang, T.; Zhang, Y. G.; Chen, Y. C. The Synthesis of Poly(p-Phenylenediamine) Microstructures without Oxidant and Their Effective Adsorption of Lead Ions. J. Mater. Chem. 2011, 21, 6683–6689; https://doi.org/10.1039/c1jm10169b.Suche in Google Scholar

13. Rahman, N.; Nasir, M. Application of Box-Behnken Design and Desirability Function in the Optimization of Cd(II) Removal from Aqueous Solution Using Poly(o-Phenylenediamine)/Hydrous Zirconium Oxide Composite: Equilibrium Modeling, Kinetic and Thermodynamic Studies. Environ. Sci. Pollut. Res. Int. 2018, 25, 26114–26134; https://doi.org/10.1007/s11356-018-2566-1.Suche in Google Scholar PubMed

14. Xiong, G.; Gao, S.; Zhang, Q.; Ren, B.; You, L.; Ding, F.; He, Y.; Sun, Y. High Porosity Cyclotriphosphazene-Based Hyper-Crosslinked Polymers as Efficient Cationic Dye MB Adsorbents. Polymer 2022, 247, 124787; https://doi.org/10.1016/j.polymer.2022.124787.Suche in Google Scholar

15. Carotenuto, G.; Romeo, V.; De Nicola, S.; Nicolais, L. Graphite Nanoplatelet Chemical Cross-Linking by Elemental Sulfur. Nanoscale Res. Lett. 2013, 8, 94; https://doi.org/10.1186/1556-276x-8-94.Suche in Google Scholar PubMed PubMed Central

16. Alizadehgiashi, M.; Khuu, N.; Khabibullin, A.; Henry, A.; Tebbe, M.; Suzuki, T.; Kumacheva, E. Nanocolloidal Hydrogel for Heavy Metal Scavenging. ACS Nano 2018, 12, 8160–8168; https://doi.org/10.1021/acsnano.8b03202.Suche in Google Scholar PubMed

17. Masoumi, H.; Ghaemi, A.; Gilani, H. G. Evaluation of Hyper-Cross-Linked Polymers Performances in the Removal of Hazardous Heavy Metal Ions: A Review. Sep. Purif. Technol. 2021, 260, 118221; https://doi.org/10.1016/j.seppur.2020.118221.Suche in Google Scholar

18. Mamat, K.; Muslim, A.; Lan, H.; Malik, D.; Musajan, A. Significantly Improving the Cu2+ Removal Performance of Conducting Polymer-Based Adsorbent from Aqueous Solution through Cross-Linking Modification. J. Appl. Polym. Sci. 2023, 140, e53176; https://doi.org/10.1002/app.53176.Suche in Google Scholar

19. Deb, A.; Das, S.; Debnath, A. Fabrication and Characterization of Organometallic Nanocomposite for Efficient Abatement of Dye Laden Wastewater: CCD Optimization, Adsorption Mechanism, Co-Existing Ions, and Cost Analysis. Chem. Phys. Lett. 2023, 830, 140820; https://doi.org/10.1016/j.cplett.2023.140820.Suche in Google Scholar

20. Saha, B.; Gayen, S.; Debnath, A. Sequestration of Paracetamol from Aqueous Solution Using Zinc Oxide/Polypyrrole Nanocomposite: Cost Analysis, Scale-Up Design, and Optimization of Process Parameters. J. Hazard., Toxic Radioact. Waste 2023, 27, 04023032; https://doi.org/10.1061/jhtrbp.hzeng-1213.Suche in Google Scholar

21. Pan, L.; Wang, C.; Wu, W.; Li, X.; Ma, S.; Li, C.; Shen, Y.; Ou, J. Bioinspired Honeycomb-like 3D Architectures Self-Assembled from Chitosan as Dual-Functional Membrane for Effective Adsorption and Detection of Copper Ion. Microporous Mesoporous Mater. 2022, 335, 111859; https://doi.org/10.1016/j.micromeso.2022.111859.Suche in Google Scholar

22. Mondal, R.; De, S. Removal of Copper(II) from Aqueous Solution Using Zinc Oxide Nanoparticle Impregnated Mixed Matrix Hollow Fiber Membrane. Environ. Technol. Innovation 2022, 26, 102300; https://doi.org/10.1016/j.eti.2022.102300.Suche in Google Scholar

23. Wu, J.; Li, Q.; Su, G.; Luo, R.; Du, D.; Xie, L.; Tang, Z.; Yan, J.; Zhou, J.; Wang, S.; Xu, K. Green, Ultrafine Cellulose-Based Porous Nanofibrous Membranes for Efficient Heavy Metal Removal through Incorporation of Chitosan by Various Electrospinning Ways. Cellulose 2022, 29, 5745–5763; https://doi.org/10.1007/s10570-022-04629-z.Suche in Google Scholar

24. Liu, J.; Beckerman, J. Application of Sustainable Biosorbents from Hemp for Remediation Copper(II)-Containing Wastewater. J. Environ. Chem. Eng. 2022, 10, 107494; https://doi.org/10.1016/j.jece.2022.107494.Suche in Google Scholar

25. Özmen, F.; Korpayev, S.; Kavaklı, P. A.; Kavaklı, C. Activation of Inert Polyethylene/Polypropylene Nonwoven Fiber (NWF) by Plasma-Initiated Grafting and Amine Functionalization of the Grafts for Cu(II), Co(II), Cr(III), Cd(II) and Pb(II) Removal. React. Funct. Polym. 2022, 174, 105234; https://doi.org/10.1016/j.reactfunctpolym.2022.105234.Suche in Google Scholar

26. Foroutan, R.; Peighambardoust, S. J.; Mohammadi, R.; Peighambardoust, S. H.; Ramavandi, B. Development of New Magnetic Adsorbent of Walnut Shell Ash/Starch/Fe3O4 for Effective Copper Ions Removal: Treatment of Groundwater Samples. Chemosphere 2022, 296, 133978; https://doi.org/10.1016/j.chemosphere.2022.133978.Suche in Google Scholar PubMed

27. Chen, J.; Wang, N.; Liu, Y.; Zhu, J.; Feng, J.; Yan, W. Synergetic Effect in a Self-Doping Polyaniline/TiO2 Composite for Selective Adsorption of Heavy Metal Ions. Synth. Met. 2018, 245, 32–41; https://doi.org/10.1016/j.synthmet.2018.08.006.Suche in Google Scholar

28. Jiang, K.; Ma, S.; Bi, H.; Chen, D.; Han, X. Morphology Controllable Fabrication of Poly-O-Phenylenediamine Microstructures Tuned by the Ionic Strength and Their Applications in pH Sensors. J. Mater. Chem. A 2014, 2, 19208–19213; https://doi.org/10.1039/c4ta04269g.Suche in Google Scholar

29. Deng, W.; Lee, S.; Libera, J. A.; Elam, J. W.; Vajda, S.; Marshall, C. L. Cleavage of the C–O–C Bond on Size-Selected Subnanometer Cobalt Catalysts and on ALD-Cobalt Coated Nanoporous Membranes. Appl. Catal. A. Gen. 2011, 393, 29–35; https://doi.org/10.1016/j.apcata.2010.11.022.Suche in Google Scholar

30. Palantken, S.; Bethke, K.; Zivanovic, V.; Kalinka, G.; Rademann, K. Cellulose Hydrogels Physically Crosslinked by Glycine: Synthesis, Characterization, Thermal and Mechanical Properties. J. Appl. Polym. Sci. 2020, 137, 48380; https://doi.org/10.1002/app.48380.Suche in Google Scholar

31. Xia, X.; Sun, P.; Sun, X.; Wang, Y.; Yang, S.; Jia, Y.; Peng, B.; Nie, C. Hyper-Crosslinked Polymers with Controlled Multiscale Porosity for Effective Removal of Benzene from Cigarette Smoke. e-Polymers 2022, 22, 19–29; https://doi.org/10.1515/epoly-2022-0006.Suche in Google Scholar

32. Gao, B.; Gao, Y.; Li, Y. Preparation and Chelation Adsorption Property of Composite Chelating Material Poly(Amidoxime)/SiO2 towards Heavy Metal Ions. Chem. Eng. J. 2010, 158, 542–549; https://doi.org/10.1016/j.cej.2010.01.046.Suche in Google Scholar

33. Daikh, S.; Ouis, D.; Benyoucef, A.; Mouffok, B. Equilibrium, Kinetic and Thermodynamic Studies for Evaluation of Adsorption Capacity of a New Potential Hybrid Adsorbent Based on Polyaniline and Chitosan for Acetaminophen. Chem. Phys. Lett. 2022, 798, 139565; https://doi.org/10.1016/j.cplett.2022.139565.Suche in Google Scholar

34. Xing, Y.; Li, Q.; Chen, X.; Li, M.; Wang, S.; Li, Y.; Wang, T.; Sun, X.; Li, X. Preparation of Isoelectric Point-Switchable Polymer Brush-Grafted Mesoporous Silica Using RAFT Polymerization with High Performance for Ni(II) Adsorption. Powder Technol. 2022, 412, 117980; https://doi.org/10.1016/j.powtec.2022.117980.Suche in Google Scholar

35. Das, S.; Rudra Paul, S.; Debnath, A. Fabrication of Biochar from Jarul (Lagerstroemia Speciosa) Seed Hull for Ultrasound Aided Sequestration of Ofloxacin from Water: Phytotoxic Assessments and Cost Analysis. J. Mol. Liq. 2023, 387, 122610; https://doi.org/10.1016/j.molliq.2023.122610.Suche in Google Scholar

36. Tran, H. N.; Bollinger, J.-C.; Lima, E. C.; Juang, R.-S. How to Avoid Mistakes in Treating Adsorption Isotherm Data (Liquid and Solid Phases): Some Comments about Correctly Using Radke-Prausnitz Nonlinear Model and Langmuir Equilibrium Constant. J. Environ. Manage. 2023, 325, 116475; https://doi.org/10.1016/j.jenvman.2022.116475.Suche in Google Scholar PubMed

37. Tran, H. N.; Lima, E. C.; Juang, R.-S.; Bollinger, J.-C.; Chao, H.-P. Thermodynamic Parameters of Liquid–Phase Adsorption Process Calculated from Different Equilibrium Constants Related to Adsorption Isotherms: A Comparison Study. J. Environ. Chem. Eng. 2021, 9, 106674; https://doi.org/10.1016/j.jece.2021.106674.Suche in Google Scholar

38. Arora, G.; Jangid, N. K.; Srivastava, A.; Dwivedi, J.; Srivastava, M.; Shukla, S. Comparative Study of the Extraction of Cu(II) and Fe(II) Ions Using Chitosan and Modified Chitosan/Polyvinylpyrrolidone Adsorptive Membranes: Adsorption, Kinetic, and Thermodynamic Study. ACS Appl. Polym. Mater. 2023, 5, 6048–6060; https://doi.org/10.1021/acsapm.3c00727.Suche in Google Scholar

39. Chávez-Guajardo, A. E.; Medina-Llamas, J. C.; Maqueira, L.; Andrade, C. A. S.; Alves, K. G. B.; de Melo, C. P. Efficient Removal of Cr (VI) and Cu (II) Ions from Aqueous Media by Use of Polypyrrole/Maghemite and Polyaniline/Maghemite Magnetic Nanocomposites. Chem. Eng. J. 2015, 281, 826–836; https://doi.org/10.1016/j.cej.2015.07.008.Suche in Google Scholar

40. Ghorbani, M.; Eisazadeh, H.; Katal, R. Fixed-bed Column Study of the Removal of Anions and Eavy Metals from Cotton Textile Waste Water by Using Polyaniline and its Nanocomposite Containing Nanometer-Size Fe3O4. J. Vinyl Addit. Technol. 2010, 16, 217–221; https://doi.org/10.1002/vnl.20224.Suche in Google Scholar

41. Jiang, N.; Xu, Y.; Dai, Y.; Luo, W.; Dai, L. Polyaniline Nanofibers Assembled on Alginate Microsphere for Cu2+ and Pb2+ Uptake. J. Hazard. Mater. 2012, 215-216, 17–24; https://doi.org/10.1016/j.jhazmat.2012.02.026.Suche in Google Scholar PubMed

42. Mao, X.; Wang, L.; Gu, S.; Duan, Y.; Zhu, Y.; Wang, C.; Lichtfouse, E. Synthesis of a Three-Dimensional Network Sodium Alginate-Poly(Acrylic Acid)/Attapulgite Hydrogel with Good Mechanic Property and Reusability for Efficient Adsorption of Cu2+ and Pb2+. Environ. Chem. Lett. 2018, 16, 653–658; https://doi.org/10.1007/s10311-018-0708-9.Suche in Google Scholar

43. Yarandpour, M. R.; Rashidi, A.; khajavi, R.; Eslahi, N.; Yazdanshenas, M. E. Mesoporous PAA/Dextran-Polyaniline Core-Shell Nanofibers: Optimization of Producing Conditions, Characterization and Heavy Metal Adsorptions. J. Taiwan Inst. Chem. Eng. 2018, 93, 566–581; https://doi.org/10.1016/j.jtice.2018.09.002.Suche in Google Scholar

44. Wu, T.; Liu, C.; Kong, B.; Sun, J.; Gong, Y.; Liu, K.; Xie, J.; Pei, A.; Cui, Y. Amidoxime-Functionalized Macroporous Carbon Self-Refreshed Electrode Materials for Rapid and High-Capacity Removal of Heavy Metal from Water. ACS Cent. Sci. 2019, 5, 719–726; https://doi.org/10.1021/acscentsci.9b00130.Suche in Google Scholar PubMed PubMed Central

45. Wang, C.; Wei, M.; Zhu, H.; Wang, L.; Ni, S.; Li, X.; D, G. Development of Porous Materials via Protein/Polysaccharides/Polyphenols Nanoparticles Stabilized Pickering High Internal Phase Emulsions for Adsorption of Pb2+ and Cu2+ Ions. Food Chem. 2024, 445, 138796; https://doi.org/10.1016/j.foodchem.2024.138796.Suche in Google Scholar PubMed

46. Xu, N.; Shi, D.; Zhang, Y.; Zhong, K.; Liu, J.; Zhao, Q.; Gao, Q.; Bian, S. Synthesis of High-Crystallinity Mg-Al Hydrotalcite with a Nanoflake Morphology and its Adsorption Properties for Cu2+ from an Aqueous Solution. Inorganics 2023, 11, 369; https://doi.org/10.3390/inorganics11090369.Suche in Google Scholar

47. Han, J.; Dai, J.; Guo, R. Highly Efficient Adsorbents of Poly(o-Phenylenediamine) Solid and Hollow Sub-Microspheres towards Lead Ions: A Comparative Study. J. Colloid Interface Sci. 2011, 356, 749–756; https://doi.org/10.1016/j.jcis.2011.01.038.Suche in Google Scholar PubMed

48. Lu, T.; Xiang, T.; Huang, X. L.; Li, C.; Zhao, W. F.; Zhang, Q.; Zhao, C. S. Post-Crosslinking towards Stimuli-Responsive Sodium Alginate Beads for the Removal of Dye and Heavy Metals. Carbohydr. Polym. 2015, 133, 587–595; https://doi.org/10.1016/j.carbpol.2015.07.048.Suche in Google Scholar PubMed

49. Luo, H.; Liu, Y.; Lu, H.; Fang, Q.; Rong, H. Efficient Adsorption of Tetracycline from Aqueous Solutions by Modified Alginate Beads after the Removal of Cu(II) Ions. ACS omega 2021, 6, 6240–6251; https://doi.org/10.1021/acsomega.0c05807.Suche in Google Scholar PubMed PubMed Central

50. Chen, J.; Yu, M.; Wang, C.; Feng, J.; Yan, W. Insight into the Synergistic Effect on Selective Adsorption for Heavy Metal Ions by a Polypyrrole/TiO(2) Composite. Langmuir 2018, 34, 10187–10196; https://doi.org/10.1021/acs.langmuir.8b01987.Suche in Google Scholar PubMed

51. Li, X. G.; Ma, X. L.; Sun, J.; Huang, M. R. Powerful Reactive Sorption of Silver(I) and Mercury(II) onto Poly(o-Phenylenediamine) Microparticles. Langmuir 2009, 25, 1675–1684; https://doi.org/10.1021/la802410p.Suche in Google Scholar PubMed

52. Guo, Y.; Wu, D.; Wu, H.; Liu, X.; Xu, H.; Chen, Q. Efficient Removal of Pb(II) Ions by Using 2-Acetylthiophene-Modified Graphene Oxide from Aqueous Solution. Mater. Today Sustain. 2022, 20, 100212; https://doi.org/10.1016/j.mtsust.2022.100212.Suche in Google Scholar

53. Yu, W.; Lian, F.; Cui, G.; Liu, Z. N-Doping Effectively Enhances the Adsorption Capacity of Biochar for Heavy Metal Ions from Aqueous Solution. Chemosphere 2018, 193, 8–16; https://doi.org/10.1016/j.chemosphere.2017.10.134.Suche in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/polyeng-2024-0010).


Received: 2024-01-12
Accepted: 2024-04-08
Published Online: 2024-04-26
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0010/html
Button zum nach oben scrollen