Enhanced interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF)/polypropylene fiber (PPF)/carbon nanotube (CNT) nano composite prepared solid dipping coating process
Abstract
The interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF), polypropylene fiber (PPF), and carbon nanotube (CNT) nano composite were investigated in the current study. In order to improve the mechanical characteristics and microstructure, the present investigations used T. grandis fiber and polypropylene fiber (inorganic–organic) materials mixed with nano composite and epoxy resin. Strong bonding strength and high wear resistance were created by the silane characteristics during the coating process for the outer surface layers. Since CNT nanomaterials were directly reflected onto the outer surface, the microstructure analyses amply demonstrated that hexagonal lattice structure and crystallisation development were detected in the inner surface layer. In order to increase high stiffness and bonding strength, storage modulus and loss modulus values were applied to all composite materials, and the TGF/PPF/CNT composite materials’ hardness value was developed at 112 HV. The tensile strength of TG/PP composite was 46.7 MPa, while that of TGF/PPF/CNT composite was 57.4 MPa. Studies on wear resistance showed unequivocally that the TGF/PPF/CNT composite reduced wear and friction.
-
Research ethics: No human and animal studies.
-
Author contributions: AL. Karthikeyan: conceptualization, methodology, supervision, writing – review & editing. M. Sekar: conceptualization, methodology, supervision, writing – review & editing. R. Selvabharathi: conceptualization, methodology, supervision, writing – review & editing. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Bartos, A.; Nagy, K.; Anggono, J.; Purwaningsih, H.; Móczó, J.; Pukánszky, B.; Pukánszky, B. Biobased PLA/Sugarcane Bagasse Fiber Composites: Effect of Fiber Characteristics and Interfacial Adhesion on Properties. Compos. A Appl. Sci. 2021, 143, 106273. https://doi.org/10.1016/j.compositesa.2021.106273.Search in Google Scholar
2. Dawit, J. B.; Regassa, Y.; Lemu, H. G. Property Characterization of acacia Tortilis for Natural Fiber Reinforced Polymer Composite. Results Mater. 2020, 5, 100054. https://doi.org/10.1016/j.rinma.2019.100054.Search in Google Scholar
3. Batu, T.; Lemu, H. G. Investigation of Mechanical Properties of False Banana/Glass Fiber Reinforced Hybrid Composite Materials. Results Mater. 2020, 8, 100152. https://doi.org/10.1016/j.rinma.2020.100152.Search in Google Scholar
4. Atteya, Y. M.; Aly, M. F. Investigation of Novel Natural Polymer Composition with Acacia for the Production of Disposable Plastic like Material. Results Mater. 2024, 21, 100501. https://doi.org/10.1016/j.rinma.2023.100501.Search in Google Scholar
5. Bartos, A.; Kócs, J.; Anggono, J.; Móczó, J.; Pukánszky, B. Effect of Fiber Attrition, Particle Characteristics and Interfacial Adhesion on the Properties of PP/Sugarcane Bagasse Fiber Composites. Polym. Test. 2021, 98, 107189. https://doi.org/10.1016/j.polymertesting.2021.107189.Search in Google Scholar
6. Hu, H.; Zhang, M.; Liu, W.; Wang, C.; Xiang, C.; Kong, C. Mechanical and Erosive Wear Performances of Natural Bamboo Fibers/SiO2/Epoxy Ternary Composites. Polym. Test. 2023, 124, 108058. https://doi.org/10.1016/j.polymertesting.2023.108058.Search in Google Scholar
7. Kim, N. K.; Bhattacharyya, D.; van Loosdrecht, M.; Lin, Y. Enhancement of Fire Resistance and Mechanical Performance of Polypropylene Composites Containing Cellulose Fibres and Extracellular Biopolymers from Wastewater Sludge. Polym. Test. 2023, 127, 108185. https://doi.org/10.1016/j.polymertesting.2023.108185.Search in Google Scholar
8. Kneissl, L. M.; Gonçalves, G.; Joffe, R.; Kalin, M.; Emami, N. Mechanical Properties and Tribological Performance of Polyoxymethylene/Short Cellulose Fiber Composites. Polym. Test. 2023, 128, 108234. https://doi.org/10.1016/j.polymertesting.2023.108234.Search in Google Scholar
9. Supian, A. B.; Jawaid, M.; Rashid, B.; Fouad, H.; Saba, N.; Dhakal, H. N.; Khiari, R. Mechanical and Physical Performance of Date Palm/Bamboo Fibre Reinforced Epoxy Hybrid Composites. J. Mater. Res. Technol. 2021, 15, 1330–1341. https://doi.org/10.1016/j.jmrt.2021.08.115.Search in Google Scholar
10. Sarmin, S. N.; Jawaid, M.; Zaki, S. A.; Radzi, A. M.; Fouad, H.; Khiari, R.; Rahayu, S.; Amini, M. H. Enhancing the Properties of Date Palm Fibre Reinforced Bio-Epoxy Composites with Chitosan–Synthesis, Mechanical Properties, and Dimensional Stability. J. King Saud Univ. Sci. 2023, 35 (7), 102833. https://doi.org/10.1016/j.jksus.2023.102833.Search in Google Scholar
11. Sabarinathan, P.; Rajkumar, K.; Annamalai, V. E.; Vishal, K. Characterization on Chemical and Mechanical Properties of Silane Treated Fish Tail Palm Fibres. Int. J. Biol. Macromol. 2020, 163, 2457–2464. https://doi.org/10.1016/j.ijbiomac.2020.09.159.Search in Google Scholar PubMed PubMed Central
12. Afzaluddin, A.; Jawaid, M.; Salit, M. S.; Ishak, M. R. Physical and Mechanical Properties of Sugar Palm/Glass Fiber Reinforced Thermoplastic Polyurethane Hybrid Composites. J. Mater. Res. Technol. 2019, 8 (1), 950–959. https://doi.org/10.1016/j.jmrt.2018.04.024.Search in Google Scholar
13. Asim, M.; Jawaid, M.; Khan, A.; Asiri, A. M.; Malik, M. A. Effects of Date Palm Fibres Loading on Mechanical, and Thermal Properties of Date Palm Reinforced Phenolic Composites. J. Mater. Res. Technol. 2020, 9 (3), 3614–3621. https://doi.org/10.1016/j.jmrt.2020.01.099.Search in Google Scholar
14. Salman, S. D. Effects of Jute Fibre Content on the Mechanical and Dynamic Mechanical Properties of the Composites in Structural Applications. Def. Technol. 2020, 16 (6), 1098–1105. https://doi.org/10.1016/j.dt.2019.11.013.Search in Google Scholar
15. Mirzamohammadi, S.; Eslami-Farsani, R.; Ebrahimnezhad-Khaljiri, H. The Experimental Assessment of Carbon Nanotubes Incorporation on the Tensile and Impact Properties of Fiber Metal Laminate Fabricated by Jute/basalt Fabrics-Aluminum Layers: As Hybrid Structures. Proc. IME C J. Mech. Eng. Sci. 2023, 237 (8), 1877–1886. https://doi.org/10.1177/09544062221134223.Search in Google Scholar
16. Costa, U. O.; Nascimento, L. F.; Garcia, J. M.; Bezerra, W. B.; Monteiro, S. N. Evaluation of Izod Impact and Bend Properties of Epoxy Composites Reinforced with Mallow Fibers. J. Mater. Res. Technol. 2020, 9 (1), 373–382. https://doi.org/10.1016/j.jmrt.2019.10.066.Search in Google Scholar
17. Ibrahim, N. I.; Shahar, F. S.; Sultan, M. T.; Shah, A. U.; Safri, S. N.; Mat Yazik, M. H. Overview of Bioplastic Introduction and its Applications in Product Packaging. Coatings 2021, 11 (11), 1423. https://doi.org/10.3390/coatings11111423.Search in Google Scholar
18. Ji, M.; Li, F.; Li, J.; Li, J.; Zhang, C.; Sun, K.; Guo, Z. Enhanced Mechanical Properties, Water Resistance, Thermal Stability, and Biodegradation of the Starch-Sisal Fibre Composites with Various Fillers. Mater. Des. 2021, 198, 109373. https://doi.org/10.1016/j.matdes.2020.109373.Search in Google Scholar
19. Azammi, A. N.; Sapuan, S. M.; Ishak, M. R.; Sultan, M. T. Physical and Damping Properties of Kenaf Fibre Filled Natural Rubber/Thermoplastic Polyurethane Composites. Def. Technol. 2020, 16 (1), 29–34. https://doi.org/10.1016/j.dt.2019.06.004.Search in Google Scholar
20. Nurazzi, N. M.; Khalina, A.; Sapuan, S. M.; Ilyas, R. A.; Rafiqah, S. A.; Hanafee, Z. M. Thermal Properties of Treated Sugar Palm Yarn/Glass Fiber Reinforced Unsaturated Polyester Hybrid Composites. J. Mater. Res. Technol. 2020, 9 (2), 1606–1618. https://doi.org/10.1016/j.jmrt.2019.11.086.Search in Google Scholar
21. Hilo, A. K.; Iborra, A. A.; Sultan, M. T.; Hamid, M. F.; Abdul Hamid, M. F. Effect of Corrugated Wall Combined with Backward-Facing Step Channel on Fluid Flow and Heat Transfer. Energy 2020, 190, 116294. https://doi.org/10.1016/j.energy.2019.116294.Search in Google Scholar
22. Sultan, M. T.; Worden, K.; Pierce, S. G.; Hickey, D.; Staszewski, W. J.; Dulieu-Barton, J. M.; Hodzic, A. On Impact Damage Detection and Quantification for CFRP Laminates Using Structural Response Data Only. Mech. Syst. Signal Process. 2011, 25 (8), 3135–3152. https://doi.org/10.1016/j.ymssp.2011.05.014.Search in Google Scholar
23. Arumugam, C.; Arumugam, S.; Muthusamy, S. Mechanical, Thermal and Morphological Properties of Unsaturated Polyester/Chemically Treated Woven Kenaf fiber/AgNPs@ PVA Hybrid Nanobiocomposites for Automotive Applications. J. Mater. Res. Technol. 2020, 9 (6), 15298–15312. https://doi.org/10.1016/j.jmrt.2020.10.084.Search in Google Scholar
24. Neves, A. C.; Rohen, L. A.; Mantovani, D. P.; Carvalho, J. P.; Vieira, C. M.; Lopes, F. P.; Simonassi, N. T.; da Luz, F. S.; Monteiro, S. N. Comparative Mechanical Properties Between Biocomposites of Epoxy and Polyester Matrices Reinforced by Hemp Fiber. J. Mater. Res. Technol. 2020, 9 (2), 1296–1304. https://doi.org/10.1016/j.jmrt.2019.11.056.Search in Google Scholar
25. García, E.; Louvier-Hernández, J. F.; Cervantes-Vallejo, F. J.; Flores-Martínez, M.; Hernández, R.; Alcaraz-Caracheo, L. A.; Hernández-Navarro, C. Mechanical, Dynamic and Tribological Characterization of HDPE/Peanut Shell Composites. Polym. Test. 2021, 98, 107075. https://doi.org/10.1016/j.polymertesting.2021.107075.Search in Google Scholar
26. Mostafa, N. H.; Ismarrubie, Z. N.; Sapuan, S. M.; Sultan, M. T. The Influence of Equi-Biaxially Fabric Prestressing on the Flexural Performance of Woven E-Glass/Polyester-Reinforced Composites. J. Compos. Mater. 2016, 50 (24), 3385–3393. https://doi.org/10.1177/0021998315620478.Search in Google Scholar
27. Mirzamohammadi, S.; Eslami-Farsani, R.; Ebrahimnezhad-Khaljiri, H. The Effect of Hybridizing Natural Fibers and Adding Montmorillonite Nanoparticles on the Impact and Bending Properties of Eco-Friendly Metal/Composite Laminates. Adv. Eng. Mater. 2023, 25 (12), 2201791. https://doi.org/10.1002/adem.202201791.Search in Google Scholar
28. Mylsamy, B.; Palaniappan, S. K.; Subramani, S. P.; Pal, S. K.; Aruchamy, K. Impact of Nanoclay on Mechanical and Structural Properties of Treated Coccinia Indica Fibre Reinforced Epoxy Composites. J. Mater. Res. Technol. 2019, 8 (6), 6021–6028. https://doi.org/10.1016/j.jmrt.2019.09.076.Search in Google Scholar
29. Kumar, S.; Prasad, L.; Kumar, S.; Patel, V. K. Physico-Mechanical and Taguchi-Designed Sliding Wear Properties of Himalayan Agave Fiber Reinforced Polyester Composite. J. Mater. Res. Technol. 2019, 8 (4), 3662–3671. https://doi.org/10.1016/j.jmrt.2019.06.004.Search in Google Scholar
30. Thiagamani, S. M., Sivakumar, P., Srinivasan, M., Yagna, S. N., Hossein, E. K., Meena, M., Rangappa, S. M., Siengchin, S. Isolation and Characterization of Agro-Waste Biomass Sapodilla Seeds as Reinforcement in Potential Polymer Composite Applications. Heliyon 2023, 9(7), 1–7; https://doi.org/10.1016/j.heliyon.2023.e17760.Search in Google Scholar PubMed PubMed Central
31. Imoisili, P. E.; Ukoba, K.; Jen, T. C. Physical, Mechanical and Thermal Properties of High Frequency Microwave Treated Plantain (Musa Paradisiaca) Fibre/MWCNT Hybrid Epoxy Nanocomposites. J. Mater. Res. Technol. 2020, 9 (3), 4933–4939. https://doi.org/10.1016/j.jmrt.2020.03.012.Search in Google Scholar
32. Kumar, S.; Mer, K. K.; Gangil, B.; Patel, V. K. Synergy of Rice-Husk Filler on Physico-Mechanical and Tribological Properties of Hybrid Bauhinia-Vahlii/Sisal Fiber Reinforced Epoxy Composites. J. Mater. Res. Technol. 2019, 8 (2), 2070–2082. https://doi.org/10.1016/j.jmrt.2018.12.021.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Enhanced interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF)/polypropylene fiber (PPF)/carbon nanotube (CNT) nano composite prepared solid dipping coating process
- Molecular dynamics study on friction of polymer material polyoxymethylene (POM)
- The effect of clay modification on the structure, dielectric behaviour and mechanical properties of PVDF/PMMA/CTAMag polymer nanocomposites as potential flexible performance materials
- Preparation and Assembly
- Preparing conductive polymer-based adsorbent with better cupric ion adsorption efficiency by monomer precursor cross-linking method
- Facile synthesis and electrochemical investigation of graphitic carbon nitride/manganese dioxide incorporated polypyrrole nanocomposite for high-performance energy storage applications
- Preparation and properties of acrylate/polyvinyl alcohol self-healing hydrogels based on hydrogen bonds and coordination bonds
- Engineering and Processing
- Study on the photodegradation behaviors of liquid crystal display (LCD) used optical cellulose triacetate films
Articles in the same Issue
- Frontmatter
- Material Properties
- Enhanced interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF)/polypropylene fiber (PPF)/carbon nanotube (CNT) nano composite prepared solid dipping coating process
- Molecular dynamics study on friction of polymer material polyoxymethylene (POM)
- The effect of clay modification on the structure, dielectric behaviour and mechanical properties of PVDF/PMMA/CTAMag polymer nanocomposites as potential flexible performance materials
- Preparation and Assembly
- Preparing conductive polymer-based adsorbent with better cupric ion adsorption efficiency by monomer precursor cross-linking method
- Facile synthesis and electrochemical investigation of graphitic carbon nitride/manganese dioxide incorporated polypyrrole nanocomposite for high-performance energy storage applications
- Preparation and properties of acrylate/polyvinyl alcohol self-healing hydrogels based on hydrogen bonds and coordination bonds
- Engineering and Processing
- Study on the photodegradation behaviors of liquid crystal display (LCD) used optical cellulose triacetate films