Startseite Enhanced interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF)/polypropylene fiber (PPF)/carbon nanotube (CNT) nano composite prepared solid dipping coating process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enhanced interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF)/polypropylene fiber (PPF)/carbon nanotube (CNT) nano composite prepared solid dipping coating process

  • Alagappan Karthikeyan EMAIL logo , Mohan Sekar und Rajendran Selvabharathi
Veröffentlicht/Copyright: 26. April 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF), polypropylene fiber (PPF), and carbon nanotube (CNT) nano composite were investigated in the current study. In order to improve the mechanical characteristics and microstructure, the present investigations used T. grandis fiber and polypropylene fiber (inorganic–organic) materials mixed with nano composite and epoxy resin. Strong bonding strength and high wear resistance were created by the silane characteristics during the coating process for the outer surface layers. Since CNT nanomaterials were directly reflected onto the outer surface, the microstructure analyses amply demonstrated that hexagonal lattice structure and crystallisation development were detected in the inner surface layer. In order to increase high stiffness and bonding strength, storage modulus and loss modulus values were applied to all composite materials, and the TGF/PPF/CNT composite materials’ hardness value was developed at 112 HV. The tensile strength of TG/PP composite was 46.7 MPa, while that of TGF/PPF/CNT composite was 57.4 MPa. Studies on wear resistance showed unequivocally that the TGF/PPF/CNT composite reduced wear and friction.


Corresponding author: Alagappan Karthikeyan, Department of Mechanical Engineering, Thamirabharani Engineering College, Tirunelveli, 627358, India, E-mail:

  1. Research ethics: No human and animal studies.

  2. Author contributions: AL. Karthikeyan: conceptualization, methodology, supervision, writing – review & editing. M. Sekar: conceptualization, methodology, supervision, writing – review & editing. R. Selvabharathi: conceptualization, methodology, supervision, writing – review & editing. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Bartos, A.; Nagy, K.; Anggono, J.; Purwaningsih, H.; Móczó, J.; Pukánszky, B.; Pukánszky, B. Biobased PLA/Sugarcane Bagasse Fiber Composites: Effect of Fiber Characteristics and Interfacial Adhesion on Properties. Compos. A Appl. Sci. 2021, 143, 106273. https://doi.org/10.1016/j.compositesa.2021.106273.Suche in Google Scholar

2. Dawit, J. B.; Regassa, Y.; Lemu, H. G. Property Characterization of acacia Tortilis for Natural Fiber Reinforced Polymer Composite. Results Mater. 2020, 5, 100054. https://doi.org/10.1016/j.rinma.2019.100054.Suche in Google Scholar

3. Batu, T.; Lemu, H. G. Investigation of Mechanical Properties of False Banana/Glass Fiber Reinforced Hybrid Composite Materials. Results Mater. 2020, 8, 100152. https://doi.org/10.1016/j.rinma.2020.100152.Suche in Google Scholar

4. Atteya, Y. M.; Aly, M. F. Investigation of Novel Natural Polymer Composition with Acacia for the Production of Disposable Plastic like Material. Results Mater. 2024, 21, 100501. https://doi.org/10.1016/j.rinma.2023.100501.Suche in Google Scholar

5. Bartos, A.; Kócs, J.; Anggono, J.; Móczó, J.; Pukánszky, B. Effect of Fiber Attrition, Particle Characteristics and Interfacial Adhesion on the Properties of PP/Sugarcane Bagasse Fiber Composites. Polym. Test. 2021, 98, 107189. https://doi.org/10.1016/j.polymertesting.2021.107189.Suche in Google Scholar

6. Hu, H.; Zhang, M.; Liu, W.; Wang, C.; Xiang, C.; Kong, C. Mechanical and Erosive Wear Performances of Natural Bamboo Fibers/SiO2/Epoxy Ternary Composites. Polym. Test. 2023, 124, 108058. https://doi.org/10.1016/j.polymertesting.2023.108058.Suche in Google Scholar

7. Kim, N. K.; Bhattacharyya, D.; van Loosdrecht, M.; Lin, Y. Enhancement of Fire Resistance and Mechanical Performance of Polypropylene Composites Containing Cellulose Fibres and Extracellular Biopolymers from Wastewater Sludge. Polym. Test. 2023, 127, 108185. https://doi.org/10.1016/j.polymertesting.2023.108185.Suche in Google Scholar

8. Kneissl, L. M.; Gonçalves, G.; Joffe, R.; Kalin, M.; Emami, N. Mechanical Properties and Tribological Performance of Polyoxymethylene/Short Cellulose Fiber Composites. Polym. Test. 2023, 128, 108234. https://doi.org/10.1016/j.polymertesting.2023.108234.Suche in Google Scholar

9. Supian, A. B.; Jawaid, M.; Rashid, B.; Fouad, H.; Saba, N.; Dhakal, H. N.; Khiari, R. Mechanical and Physical Performance of Date Palm/Bamboo Fibre Reinforced Epoxy Hybrid Composites. J. Mater. Res. Technol. 2021, 15, 1330–1341. https://doi.org/10.1016/j.jmrt.2021.08.115.Suche in Google Scholar

10. Sarmin, S. N.; Jawaid, M.; Zaki, S. A.; Radzi, A. M.; Fouad, H.; Khiari, R.; Rahayu, S.; Amini, M. H. Enhancing the Properties of Date Palm Fibre Reinforced Bio-Epoxy Composites with Chitosan–Synthesis, Mechanical Properties, and Dimensional Stability. J. King Saud Univ. Sci. 2023, 35 (7), 102833. https://doi.org/10.1016/j.jksus.2023.102833.Suche in Google Scholar

11. Sabarinathan, P.; Rajkumar, K.; Annamalai, V. E.; Vishal, K. Characterization on Chemical and Mechanical Properties of Silane Treated Fish Tail Palm Fibres. Int. J. Biol. Macromol. 2020, 163, 2457–2464. https://doi.org/10.1016/j.ijbiomac.2020.09.159.Suche in Google Scholar PubMed PubMed Central

12. Afzaluddin, A.; Jawaid, M.; Salit, M. S.; Ishak, M. R. Physical and Mechanical Properties of Sugar Palm/Glass Fiber Reinforced Thermoplastic Polyurethane Hybrid Composites. J. Mater. Res. Technol. 2019, 8 (1), 950–959. https://doi.org/10.1016/j.jmrt.2018.04.024.Suche in Google Scholar

13. Asim, M.; Jawaid, M.; Khan, A.; Asiri, A. M.; Malik, M. A. Effects of Date Palm Fibres Loading on Mechanical, and Thermal Properties of Date Palm Reinforced Phenolic Composites. J. Mater. Res. Technol. 2020, 9 (3), 3614–3621. https://doi.org/10.1016/j.jmrt.2020.01.099.Suche in Google Scholar

14. Salman, S. D. Effects of Jute Fibre Content on the Mechanical and Dynamic Mechanical Properties of the Composites in Structural Applications. Def. Technol. 2020, 16 (6), 1098–1105. https://doi.org/10.1016/j.dt.2019.11.013.Suche in Google Scholar

15. Mirzamohammadi, S.; Eslami-Farsani, R.; Ebrahimnezhad-Khaljiri, H. The Experimental Assessment of Carbon Nanotubes Incorporation on the Tensile and Impact Properties of Fiber Metal Laminate Fabricated by Jute/basalt Fabrics-Aluminum Layers: As Hybrid Structures. Proc. IME C J. Mech. Eng. Sci. 2023, 237 (8), 1877–1886. https://doi.org/10.1177/09544062221134223.Suche in Google Scholar

16. Costa, U. O.; Nascimento, L. F.; Garcia, J. M.; Bezerra, W. B.; Monteiro, S. N. Evaluation of Izod Impact and Bend Properties of Epoxy Composites Reinforced with Mallow Fibers. J. Mater. Res. Technol. 2020, 9 (1), 373–382. https://doi.org/10.1016/j.jmrt.2019.10.066.Suche in Google Scholar

17. Ibrahim, N. I.; Shahar, F. S.; Sultan, M. T.; Shah, A. U.; Safri, S. N.; Mat Yazik, M. H. Overview of Bioplastic Introduction and its Applications in Product Packaging. Coatings 2021, 11 (11), 1423. https://doi.org/10.3390/coatings11111423.Suche in Google Scholar

18. Ji, M.; Li, F.; Li, J.; Li, J.; Zhang, C.; Sun, K.; Guo, Z. Enhanced Mechanical Properties, Water Resistance, Thermal Stability, and Biodegradation of the Starch-Sisal Fibre Composites with Various Fillers. Mater. Des. 2021, 198, 109373. https://doi.org/10.1016/j.matdes.2020.109373.Suche in Google Scholar

19. Azammi, A. N.; Sapuan, S. M.; Ishak, M. R.; Sultan, M. T. Physical and Damping Properties of Kenaf Fibre Filled Natural Rubber/Thermoplastic Polyurethane Composites. Def. Technol. 2020, 16 (1), 29–34. https://doi.org/10.1016/j.dt.2019.06.004.Suche in Google Scholar

20. Nurazzi, N. M.; Khalina, A.; Sapuan, S. M.; Ilyas, R. A.; Rafiqah, S. A.; Hanafee, Z. M. Thermal Properties of Treated Sugar Palm Yarn/Glass Fiber Reinforced Unsaturated Polyester Hybrid Composites. J. Mater. Res. Technol. 2020, 9 (2), 1606–1618. https://doi.org/10.1016/j.jmrt.2019.11.086.Suche in Google Scholar

21. Hilo, A. K.; Iborra, A. A.; Sultan, M. T.; Hamid, M. F.; Abdul Hamid, M. F. Effect of Corrugated Wall Combined with Backward-Facing Step Channel on Fluid Flow and Heat Transfer. Energy 2020, 190, 116294. https://doi.org/10.1016/j.energy.2019.116294.Suche in Google Scholar

22. Sultan, M. T.; Worden, K.; Pierce, S. G.; Hickey, D.; Staszewski, W. J.; Dulieu-Barton, J. M.; Hodzic, A. On Impact Damage Detection and Quantification for CFRP Laminates Using Structural Response Data Only. Mech. Syst. Signal Process. 2011, 25 (8), 3135–3152. https://doi.org/10.1016/j.ymssp.2011.05.014.Suche in Google Scholar

23. Arumugam, C.; Arumugam, S.; Muthusamy, S. Mechanical, Thermal and Morphological Properties of Unsaturated Polyester/Chemically Treated Woven Kenaf fiber/AgNPs@ PVA Hybrid Nanobiocomposites for Automotive Applications. J. Mater. Res. Technol. 2020, 9 (6), 15298–15312. https://doi.org/10.1016/j.jmrt.2020.10.084.Suche in Google Scholar

24. Neves, A. C.; Rohen, L. A.; Mantovani, D. P.; Carvalho, J. P.; Vieira, C. M.; Lopes, F. P.; Simonassi, N. T.; da Luz, F. S.; Monteiro, S. N. Comparative Mechanical Properties Between Biocomposites of Epoxy and Polyester Matrices Reinforced by Hemp Fiber. J. Mater. Res. Technol. 2020, 9 (2), 1296–1304. https://doi.org/10.1016/j.jmrt.2019.11.056.Suche in Google Scholar

25. García, E.; Louvier-Hernández, J. F.; Cervantes-Vallejo, F. J.; Flores-Martínez, M.; Hernández, R.; Alcaraz-Caracheo, L. A.; Hernández-Navarro, C. Mechanical, Dynamic and Tribological Characterization of HDPE/Peanut Shell Composites. Polym. Test. 2021, 98, 107075. https://doi.org/10.1016/j.polymertesting.2021.107075.Suche in Google Scholar

26. Mostafa, N. H.; Ismarrubie, Z. N.; Sapuan, S. M.; Sultan, M. T. The Influence of Equi-Biaxially Fabric Prestressing on the Flexural Performance of Woven E-Glass/Polyester-Reinforced Composites. J. Compos. Mater. 2016, 50 (24), 3385–3393. https://doi.org/10.1177/0021998315620478.Suche in Google Scholar

27. Mirzamohammadi, S.; Eslami-Farsani, R.; Ebrahimnezhad-Khaljiri, H. The Effect of Hybridizing Natural Fibers and Adding Montmorillonite Nanoparticles on the Impact and Bending Properties of Eco-Friendly Metal/Composite Laminates. Adv. Eng. Mater. 2023, 25 (12), 2201791. https://doi.org/10.1002/adem.202201791.Suche in Google Scholar

28. Mylsamy, B.; Palaniappan, S. K.; Subramani, S. P.; Pal, S. K.; Aruchamy, K. Impact of Nanoclay on Mechanical and Structural Properties of Treated Coccinia Indica Fibre Reinforced Epoxy Composites. J. Mater. Res. Technol. 2019, 8 (6), 6021–6028. https://doi.org/10.1016/j.jmrt.2019.09.076.Suche in Google Scholar

29. Kumar, S.; Prasad, L.; Kumar, S.; Patel, V. K. Physico-Mechanical and Taguchi-Designed Sliding Wear Properties of Himalayan Agave Fiber Reinforced Polyester Composite. J. Mater. Res. Technol. 2019, 8 (4), 3662–3671. https://doi.org/10.1016/j.jmrt.2019.06.004.Suche in Google Scholar

30. Thiagamani, S. M., Sivakumar, P., Srinivasan, M., Yagna, S. N., Hossein, E. K., Meena, M., Rangappa, S. M., Siengchin, S. Isolation and Characterization of Agro-Waste Biomass Sapodilla Seeds as Reinforcement in Potential Polymer Composite Applications. Heliyon 2023, 9(7), 1–7; https://doi.org/10.1016/j.heliyon.2023.e17760.Suche in Google Scholar PubMed PubMed Central

31. Imoisili, P. E.; Ukoba, K.; Jen, T. C. Physical, Mechanical and Thermal Properties of High Frequency Microwave Treated Plantain (Musa Paradisiaca) Fibre/MWCNT Hybrid Epoxy Nanocomposites. J. Mater. Res. Technol. 2020, 9 (3), 4933–4939. https://doi.org/10.1016/j.jmrt.2020.03.012.Suche in Google Scholar

32. Kumar, S.; Mer, K. K.; Gangil, B.; Patel, V. K. Synergy of Rice-Husk Filler on Physico-Mechanical and Tribological Properties of Hybrid Bauhinia-Vahlii/Sisal Fiber Reinforced Epoxy Composites. J. Mater. Res. Technol. 2019, 8 (2), 2070–2082. https://doi.org/10.1016/j.jmrt.2018.12.021.Suche in Google Scholar

Received: 2024-01-07
Accepted: 2024-02-19
Published Online: 2024-04-26
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0001/html
Button zum nach oben scrollen