Startseite Numerical investigation of the strength of Al/GFRP adhesive bonding under tensile loading
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical investigation of the strength of Al/GFRP adhesive bonding under tensile loading

  • Mohammad Reza Samadi ORCID logo EMAIL logo , Mohammad Hossein Alaei und Jafar Eskandari Jam
Veröffentlicht/Copyright: 10. Januar 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, adhesive bonding of aluminum (Al) to glass fiber reinforced polymer (GFRP) was investigated using finite element analysis to optimize bond strength. Mechanical surface preparation has a great influence on the chemical properties (increasing surface energy and creating a stronger bond) and mechanical properties (creating mechanical interlocking and increasing friction) of adhesive bonding. Hence, the response surface method was employed to examine the influence of groove number (1, 3, 5), groove angle (0, 45, 90°), groove shape (V-shape, square, concave), and joint type (metal–metal, metal–composite, composite–composite) on the tensile strength of the bond. To simulate the bond behavior of Al/GFRP under different parameter conditions, the cohesive zone model was used to consider the crack growth. Optimization results obtained by the desirability function method showed that the maximum bond strength was achieved with a groove number of 1, groove shape of square, groove angle of 0°, and metal–metal joint type. The optimization results predicted by the desirability function and finite element analysis were in good agreement with those obtained by experimental tests.


Corresponding author: Mohammad Reza Samadi, Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran 1435761137, Iran, E-mail:

  1. Ethical approval: The conducted research is not related to either human or animals use.

  2. Author contributions: Mohammad Reza Samadi and Mohammad Hossein Alaei designed the experiments and Jafar Eskandari Jam carried them out. Mohammad Reza Samadi developed the model code and performed the simulations. Mohammad Reza Samadi prepared the manuscript with contributions from all co-authors. The authors applied the SDC approach for the sequence of authors.

  3. Research funding: The authors state no funding involved.

  4. Competing interests: The authors state no conflict of interest.

  5. Data availability: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

1. Alachek, I., Reboul, N., Jurkiewiez, B. Compos. Struct. 2019, 207, 148–165; https://doi.org/10.1016/j.compstruct.2018.09.013.Suche in Google Scholar

2. Hu, Y., Zhang, J., Wang, L., Jiang, H., Cheng, F., Hu, X. Surf. Coat. Technol. 2022, 432, 128072; https://doi.org/10.1016/j.surfcoat.2021.128072.Suche in Google Scholar

3. Chen, D., Luo, Q., Meng, M., Li, Q., Sun, G. Compos. B Eng. 2019, 176, 107191; https://doi.org/10.1016/j.compositesb.2019.107191.Suche in Google Scholar

4. Reis, P. N. B., Neto, M. A., Amaro, A. M. Compos. Struct. 2018, 188, 48–54; https://doi.org/10.1016/j.compstruct.2018.01.001.Suche in Google Scholar

5. Tan, B., Hu, Y., Yuan, B., Hu, X., Huang, Z. Int. J. Adhes. Adhes. 2021, 110, 102952; https://doi.org/10.1016/j.ijadhadh.2021.102952.Suche in Google Scholar

6. Pečnik, J. P., Gavrić, I., Sebera, V., Kržan, M., Kwiecień, A., Zając, B., Azinović, B. Eng. Struct. 2021, 247, 113125; https://doi.org/10.1016/j.engstruct.2021.113125.Suche in Google Scholar

7. Saleema, N., Sarkar, D. K., Paynter, R. W., Gallant, D., Eskandarian, M. Appl. Surf. Sci. 2021, 261, 742–748; https://doi.org/10.1016/j.apsusc.2012.08.091.Suche in Google Scholar

8. Sun, G., Xia, X., Liu, X., Luo, Q., Li, Q. Thin-Walled Struct. 2021, 164, 107657; https://doi.org/10.1016/j.tws.2021.107657.Suche in Google Scholar

9. Rudawska, A. J. Adhes. 2020, 96, 402–422; https://doi.org/10.1080/00218464.2019.1656615.Suche in Google Scholar

10. Jeevi, G., Kumar Nayak, S., Abdul Kader, M. J. Adhes. Sci. Technol. 2019, 33, 1497–1520; https://doi.org/10.1080/01694243.2018.1543528.Suche in Google Scholar

11. Park, Y. B., Song, M. G., Kim, J. J., Kweon, J. H., Choi, J. H. Compos. Struct. 2010, 92, 2173–2180; https://doi.org/10.1016/j.compstruct.2009.09.009.Suche in Google Scholar

12. Williams, T. S., Yu, H., Hicks, R. F. J. Adhes. Sci. Technol. 2014, 28, 653–674; https://doi.org/10.1080/01694243.2013.859646.Suche in Google Scholar

13. Carnes, M. D., Mtenga, P. V. J. Reinf. Plast. Compos. 2015, 34, 1167–1178; https://doi.org/10.1177/0731684415587543.Suche in Google Scholar

14. Rakgate, S. M., Dundu, M. Struct. 2018, 14, 348–357; https://doi.org/10.1016/j.istruc.2018.04.004.Suche in Google Scholar

15. Sathiyamurthy, R., Duraiselvam, M. Mater. Manuf. Process. 2019, 34, 1296–1305; https://doi.org/10.1080/10426914.2019.1644453.Suche in Google Scholar

16. Von Der Leeden, M. C., Frens, G. J. Adv. Eng. Mater. 2002, 4, 280–289.10.1002/1527-2648(20020503)4:5<280::AID-ADEM280>3.0.CO;2-ZSuche in Google Scholar

17. Hu, Y., Yuan, B., Cheng, F., Hu, X. Compos. B Eng. 2019, 178, 107478; https://doi.org/10.1016/j.compositesb.2019.107478.Suche in Google Scholar

18. Paz, E., Narbón, J. J., Abenojar, J., Cledera, M., del Real, J. C. J. Adhes. 2016, 92, 877–891; https://doi.org/10.1080/00218464.2015.1051221.Suche in Google Scholar

19. Repeta, V., Kukura, Y., Shibanov, V., Myklushka, I., Kukura, V. J. Print Media Technol. Res. 2020, 9, 177–184.Suche in Google Scholar

20. Reddy, N. S., Jinaga, U. K., Charuku, B. R., Penumakala, P. K., Siva Prasad, A. V. S. Int. J. Adhes. Adhes. 2019, 90, 97–105; https://doi.org/10.1016/j.ijadhadh.2019.02.004.Suche in Google Scholar

21. Xu, W., Wei, Y. Int. J. Adhes. Adhes. 2012, 34, 80–92.Suche in Google Scholar

22. Choupani, N. Int. J. Adhes. Adhes. 2009, 29, 761–773.Suche in Google Scholar

23. Ribeiro, T. E. A., Campilho, R. D. S. G., da Silva, L. F. M., Goglio, L. Compos. Struct. 2016, 36, 25–33.10.1016/j.compstruct.2015.09.054Suche in Google Scholar

24. Ogawa, Y., Naito, K., Harada, K., Oguma, H. Int. J. Adhes. Adhes. 2022, 117, 103172; https://doi.org/10.1016/j.ijadhadh.2022.103172.Suche in Google Scholar

25. Marami, G., Nazari, S. A., Faghidian, S. A., Vakili-Tahami, F., Etemadi, S. Int. J. Adhes. Adhes. 2016, 70, 277–286; https://doi.org/10.1016/j.ijadhadh.2016.07.014.Suche in Google Scholar

26. Katsivalis, I., Thomsen, O. T., Feih, S., Achintha, M. Int. J. Adhes. Adhes. 2020, 97, 102479; https://doi.org/10.1016/j.ijadhadh.2019.102479.Suche in Google Scholar

27. Rocha, A. V. M., Akhavan-Safar, A., Carbas, R., Marques, E. A. S., Goyal, R., El-zein, M., da Silva, L. F. M. Theor. Appl. Fract. Mech. 2020, 106, 102493; https://doi.org/10.1016/j.tafmec.2020.102493.Suche in Google Scholar

28. Pisavadia, H., Toussaint, G., Dolez, P., Hogan, J. D. Int. J. Impact Eng. 2022, 170, 104364; https://doi.org/10.1016/j.ijimpeng.2022.104364.Suche in Google Scholar

29. Khoramishad, H., Ebrahimijamal, M., Fasihi, M. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 1905–1916; https://doi.org/10.1111/ffe.12612.Suche in Google Scholar

30. Polat, S., Avci, A., Ekrem, M. Compos. Struct. 2018, 194, 624–632; https://doi.org/10.1016/j.compstruct.2018.04.043.Suche in Google Scholar

31. Da Silva, L. F., Ferreira, N. M. A. J., Richter-Trummer, V., Marques, E. A. S. Int. J. Adhes. Adhes. 2010, 30, 735–743; https://doi.org/10.1016/j.ijadhadh.2010.07.005.Suche in Google Scholar

32. Kim, T. H., Kweon, J. H., Choi, J. H. J. Reinf. Plast. Compos. 2008, 27, 1071–1081; https://doi.org/10.1177/0731684407087074.Suche in Google Scholar

33. Akman, E., Bora, M. O., Çoban, O., Oztoprak, B. G. Int. J. Adhes. Adhes. 2021, 107, 102830; https://doi.org/10.1016/j.ijadhadh.2021.102830.Suche in Google Scholar

34. Xie, Y., Yang, B., Lu, L., Wan, Z., Liu, X. Compos. Struct. 2020, 232, 111559; https://doi.org/10.1016/j.compstruct.2019.111559.Suche in Google Scholar

35. Di Bella, G., Alderucci, T., Borsellino, C., Miranda, R., Valenza, A. J. Adhes. Sci. Technol. 2023, 37, 945–960; https://doi.org/10.1080/01694243.2022.2054603.Suche in Google Scholar

36. Mohammadi Ghahsareh, F., Mostofinejad, D. Constr. Build. Mater. 2022, 342, 127980; https://doi.org/10.1016/j.conbuildmat.2022.127980.Suche in Google Scholar

37. Li, H., Zhu, Y., Meng, X., Li, S., Du, W., Qin, X. J. Adhes. 2023, 99, 1744–1767; https://doi.org/10.1080/00218464.2022.2158731.Suche in Google Scholar

38. Ayaz, M., Khandaei, M., Vahidshad, Y. J. Adhes. Sci. Technol. 2021, 35, 2202–2229; https://doi.org/10.1080/01694243.2021.1882765.Suche in Google Scholar

39. Afshari, M., Taher, F., Samadi, M. R., Ayaz, M. Opt. Laser Technol. 2022, 156, 108537; https://doi.org/10.1016/j.optlastec.2022.108537.Suche in Google Scholar

Received: 2023-11-29
Accepted: 2023-12-19
Published Online: 2024-01-10
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0273/html
Button zum nach oben scrollen