Home Preparation, characterization, and application of fluorinated acrylate copolymer for the conservation of stone building heritages in Putuo Zongcheng Temple, China
Article
Licensed
Unlicensed Requires Authentication

Preparation, characterization, and application of fluorinated acrylate copolymer for the conservation of stone building heritages in Putuo Zongcheng Temple, China

  • Zhiyong Wu , Chuang Ma EMAIL logo , Qinghe Niu , Caiwu Wu and Ye Wang
Published/Copyright: January 4, 2024
Become an author with De Gruyter Brill

Abstract

To prevent the weathering deterioration of stone building heritages in Putuo Zongcheng Temple, the fluorinated acrylate copolymer was prepared with methyl methacrylate, n-butyl acrylate, and 2,2,3,4,4,4-hexafluorobutyl methacrylate as monomers. The structure and surface morphology of the copolymer were described by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The antiaging of the copolymer was studied by the ultraviolet aging test; the contact angle and imbibition spontaneous tests were performed to estimate the wettability alteration of the copolymer emulsion. Results show that the fluorinated copolymer with 32.54 % HFMA content possesses optimal aging resistance and superb hydrophobicity. The contact angles of coated samples range from 96.90° to 125.80°. Considering the influence of water on rock weathering, the fluorinated copolymer coating is a potential method to avoid the degrading of stone heritages.


Corresponding author: Chuang Ma, Department of Chemistry, Hebei Normal University for Nationalities, Chengde, 067000 China; and Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 263000 Malaysia, E-mail:

Funding source: School-level Fund Project of Hebei Normal University for Nationalities

Award Identifier / Grant number: (Grant No. QN2019002)

Funding source: the Natural Science Foundation of Hebei Province

Award Identifier / Grant number: (Grant No. E2019101012)

  1. Research ethics: Not applicable.

  2. Author contributions: ZW Methodology; CM Writing - Review & Editing; QN Writing - Original Draft; CW Visualization; YW Formal analysis. The author(s) have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: All other authors state no conflict of interest.

  4. Research funding: This work was sponsored by the School-level Fund Project of Hebei Normal University for Nationalities (Grant No. QN2019002) and the Natural Science Foundation of Hebei Province (Grant No. E2019101012).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Chelazzi, D., Poggi, G., Jaidar, Y., Toccafondi, N., Giorgi, R., Baglioni, P. Hydroxide Nanoparticles for Cultural Heritage: Consolidation and Protection of Wall Paintings and Carbonate Materials. J. Colloid Interf. Sci. 2013, 392, 42–49; https://doi.org/10.1016/j.jcis.2012.09.069.Search in Google Scholar PubMed

2. Zoghlami, K., Martín-Martín, J. D., Gómez-Gras, D., Navarro, A., Parcerisa, D., Rosell, J. R. The Building Stone of the Roman City of Dougga (Tunisia): Provenance, Petrophysical Characterisation and Durability. Cr. Geosci. 2017, 349, 402–411; https://doi.org/10.1016/j.crte.2017.09.017.Search in Google Scholar

3. La Russa, M. F., Barone, G., Belfiore, C. M., Mazzoleni, P., Pezzino, A. Application of Protective Products to “Noto” Calcarenite (South-Eastern Sicily): A Case Study for the Conservation of Stone Materials. Environ. Earth Sci. 2011, 62, 1263–1272; https://doi.org/10.1007/s12665-010-0614-3.Search in Google Scholar

4. Niu, Q., Cao, L., Sang, S., Wang, W., Zhou, X., Yuan, W., Ji, Z., Chang, J., Li, M. Experimental Study on the Softening Effect and Mechanism of Anthracite with CO2 Injection. Int. J. Rock Mech. Mining Sci. 2021, 138, 104614; https://doi.org/10.1016/j.ijrmms.2021.104614.Search in Google Scholar

5. Niu, Q. H., Wang, Q. Z., Wang, W., Chang, J. F., Chen, M. Y., Wang, H. C., Cai, N., Fan, L. Responses of Multi-Scale Microstructures, Physical-Mechanical and Hydraulic Characteristics of Roof Rocks Caused by the Supercritical CO2-Water-Rock Reaction. Energy 2022, 238, 121727; https://doi.org/10.1016/j.energy.2021.121727.Search in Google Scholar

6. Wu, Y., Zhang, J., Wang, L., Wang, Y. A Rock-Weathering Bacterium Isolated from Rock Surface and its Role in Ecological Restoration on Exposed Carbonate Rocks. Ecol. Eng. 2017, 101, 162–169; https://doi.org/10.1016/j.ecoleng.2017.01.023.Search in Google Scholar

7. Niu, Q. H., Cao, L. W., Sang, S. X., Wang, W., Yuan, W., Chang, J. F., Jia, X. J., Zheng, W. M., Zhang, Z. X. A Small-Scale Experimental Study of CO2 Enhanced Injectivity Methods of the High-Rank Coal. Petrol. Sci. 2021, 18(5), 1427–1440; https://doi.org/10.1016/j.petsci.2021.08.006.Search in Google Scholar

8. Kanth, A. P., Soni, A. K. Application of Nanocomposites for Conservation of Materials of Cultural Heritage. J. Cult. Herit. 2023, 59, 120–130; https://doi.org/10.1016/j.culher.2022.11.010.Search in Google Scholar

9. Khallaf, M. K., El-Midany, A. A., El-Mofty, S. E. Influence of Acrylic Coatings on the Interfacial, Physical, and Mechanical Properties of Stone-Based Monuments. Prog. Org. Coat. 2011, 72, 592–598; https://doi.org/10.1016/j.porgcoat.2011.06.021.Search in Google Scholar

10. Zhang, H., Liu, Q., Liu, T., Zhang, B. The Preservation Damage of Hydrophobic Polymer Coating Materials in Conservation of Stone Relics. Prog. Org. Coat. 2013, 76, 1127–1134; https://doi.org/10.1016/j.porgcoat.2013.03.018.Search in Google Scholar

11. Dong, R., Liu, L. Preparation and Properties of Acrylic Resin Coating Modified by Functional Graphene Oxide. Appl. Surf. Sci. 2016, 368, 378–387; https://doi.org/10.1016/j.apsusc.2016.01.275.Search in Google Scholar

12. Buj, O., Gisbert, J. Influence of Pore Morphology on the Durability of Sedimentary Building Stones from Aragon (Spain) Subjected to Standard Salt Decay Tests. Environ. Earth Sci. 2010, 61, 1327–1336; https://doi.org/10.1007/s12665-010-0451-4.Search in Google Scholar

13. Charola, A. E. Water-Repellent Treatments for Building Stones: A Practical Overview. APT Bull. 1995, 26, 10–17; https://doi.org/10.2307/1504480.Search in Google Scholar

14. Melo, M. J., Bracci, S., Camaiti, M., Chiantore, O., Piacenti, F. Photodegradation of Acrylic Resins Used in the Conservation of Stone. Polym. Degrad. Stab. 1999, 66, 23–30; https://doi.org/10.1016/s0141-3910(99)00048-8.Search in Google Scholar

15. Pintus, V., Wei, S., Schreiner, M. Accelerated UV Ageing Studies of Acrylic, Alkyd, and Polyvinyl Acetate Paints: influence of Inorganic Pigments. Microchem. J. 2016, 124, 949–961; https://doi.org/10.1016/j.microc.2015.07.009.Search in Google Scholar

16. Haas, K. H., Amberg-Schwab, S., Rose, K., Schottner, G. Functionalized Coatings Based on Inorganic–Organic Polymers (ORMOCER®; S) and Their Combination with Vapor Deposited Inorganic Thin Films. Surf. Coat. Technol. 1999, 111, 72–79; https://doi.org/10.1016/s0257-8972(98)00711-7.Search in Google Scholar

17. Sadat Shojai, M., Ershad Langroudi, A. Polymeric Coatings for Protection of Historic Monuments: Opportunities and Challenges. J. Appl. Polym. Sci. 2010, 112, 2535–2551; https://doi.org/10.1002/app.29801.Search in Google Scholar

18. Chiantore, O., Lazzari, M. Photo-Oxidative Stability of Paraloid Acrylic Protective Polymers. Polymer 2001, 42, 17–27; https://doi.org/10.1016/s0032-3861(00)00327-x.Search in Google Scholar

19. Yang, X., Zhu, L., Zhang, Y., Chen, Y., Bao, B., Xu, J., Zhou, W. Surface Properties and Self-Cleaning Ability of the Fluorinated Acrylate Coatings Modified with Dodecafluoroheptyl Methacrylate through Two Adding Ways. Appl. Surf. Sci. 2014, 295, 44–49; https://doi.org/10.1016/j.apsusc.2013.12.177.Search in Google Scholar

20. He, L., Liang, J., Zhao, X., Li, W., Luo, H. Preparation and Comparative Evaluation of Well-Defined Fluorinated Acrylic Copolymer Latex and Solution for Ancient Stone Protection. Prog. Org. Coat. 2010, 69, 352–358; https://doi.org/10.1016/j.porgcoat.2010.07.008.Search in Google Scholar

21. Saïdi, S., Guittarda, F., Géribaldi, S., Géribaldi, S. Synthesis and Characterization of Copolymers Based on Styrene and Partially Fluorinated Acrylates. Eur. Polym. J. 2006, 42, 702–710; https://doi.org/10.1016/j.eurpolymj.2005.09.012.Search in Google Scholar

22. Coulson, S. R., Woodward, I. S., Badyal, J. P. S., Brewer, S. A., Willis, C. Plasmachemical Functionalization of Solid Surfaces with Low Surface Energy Perfluorocarbon Chains. Langmuir 2000, 16, 6287–6293; https://doi.org/10.1021/la0001676.Search in Google Scholar

23. Ciardelli, F., Aglietto, M., Montagnini Di Mirabello, L., Passaglia, E., Giancristoforo, S., Castelvetro, V., Ruggeri, G. New Fluorinated Acrylic Polymers for Improving Weatherability of Building Stone Materials. Prog. Org. Coat. 1997, 32, 43–50; https://doi.org/10.1016/s0300-9440(97)00063-5.Search in Google Scholar

24. Toniolo, L., Poli, T., Castelvetro, V., Manariti, A., Chiantore, O., Lazzari, M. Tailoring New Fluorinated Acrylic Copolymers as Protective Coatings for Marble. J. Cult. Herit. 2002, 3, 309–316; https://doi.org/10.1016/s1296-2074(02)01240-2.Search in Google Scholar

25. Ji, Z. M., Chen, Z. J., Pan, J. N., Niu, Q. H. A Novel Method for Estimating Methane Emissions from Underground Coal Mines: The Yanma Coal Mine, China. Atmos. Environ. 2017, 170, 96–107; https://doi.org/10.1016/j.atmosenv.2017.09.052.Search in Google Scholar

26. Bhargava, S., Kubota, M., Lewis, R. D., Advani, S. G., Prasad, A. K., Deitzel, J. M. Ultraviolet, Water, and Thermal Aging Studies of a Waterborne Polyurethane Elastomer-Based High Reflectivity Coating. Prog. Org. Coat. 2015, 79, 75–82; https://doi.org/10.1016/j.porgcoat.2014.11.005.Search in Google Scholar

27. Chen, L., Shi, H., Wu, H., Xiang, J. Preparation and Characterization of a Novel Fluorinated Acrylate Resin. J. Fluorine Chem. 2010, 131, 731–737; https://doi.org/10.1016/j.jfluchem.2010.03.009.Search in Google Scholar

28. Niu, Q., Pan, J., Cao, L., Ji, Z., Wang, H., Wang, K., Wang, Z. The Evolution and Formation Mechanisms of Closed Pores in Coal. Fuel 2017, 200, 555–563; https://doi.org/10.1016/j.fuel.2017.03.084.Search in Google Scholar

29. Bongiovanni, R., Pollicino, N., Gozzelino, G., Malucelli, G., Priola, A., Ameduri, B. Surface Properties of Networks Containing Fluorinated Acrylic Monomers. Polym. Advan. Technol. 2015, 7, 403–408; https://doi.org/10.1002/(sici)1099-1581(199605)7:5/6<403::aid-pat502>3.0.co;2-0.10.1002/(SICI)1099-1581(199605)7:5/6<403::AID-PAT502>3.3.CO;2-SSearch in Google Scholar

30. Andrady, A. L., Hamid, S. H., Hu, X., Torikai, A. Effects of Increased Solar Ultraviolet Radiation on Materials. J. Photochem. Photobiol. B Biol. 1998, 46, 96–103; https://doi.org/10.1016/s1011-1344(98)00188-2.Search in Google Scholar

31. Montagna, L. S., Catto, A. L., Camargo Forte, M. M. D., Chiellini, E., Corti, A., Morelli, A., Campomanes Santana, R. M. Comparative Assessment of Degradation in Aqueous Medium of Polypropylene Films Doped with Transition Metal Free (Experimental) and Transition Metal Containing (Commercial) Pro-oxidant/Pro-degradant Additives after Exposure to Controlled UV Radiation. Polym. Degrad. Stab. 2015, 120, 186–192; https://doi.org/10.1016/j.polymdegradstab.2015.06.019.Search in Google Scholar

32. Feng, C., Kong, Y., Jiang, G., Yang, J., Pu, C., Zhang, Y. Wettability Modification of Rock Cores by Fluorinated Copolymer Emulsion for the Enhancement of Gas and Oil Recovery. Appl. Surf. Sci. 2012, 258, 7075–7081; https://doi.org/10.1016/j.apsusc.2012.03.180.Search in Google Scholar

33. Wang, H., Cheng, X., Tian, J., Li, T., Wang, W., Pan, J., Niu, Q., Feng, S., Hao, H., Zhang, Y. Permeability Enhancement of Low Rank Coal through Acidization Using H2S Solution: an Experimental Study in the Kuqa-Bay Coalfield, Xinjiang, China. J. Petrol. Sci. Eng. 2020, 185, 106476; https://doi.org/10.1016/j.petrol.2019.106476.Search in Google Scholar

34. Ling, S., Wu, X., Zhao, S., Liao, X. Evolution of Porosity and Clay Mineralogy Associated with Chemical Weathering of Black Shale: A Case Study of Lower Cambrian Black Shale in Chongqing, China. J. Geochem. Explor. 2018, 188, 326–339; https://doi.org/10.1016/j.gexplo.2018.02.002.Search in Google Scholar

35. Momeni, A. A., Khanlari, G. R., Heidari, M., Sepahi, A. A., Bazvand, E. New Engineering Geological Weathering Classifications for Granitoid Rocks. Eng. Geol. 2015, 185, 43–51; https://doi.org/10.1016/j.enggeo.2014.11.012.Search in Google Scholar

36. Cueto, N., Benavente, D., Martínez-Martínez, J., García-Del-Cura, M. A. Rock Fabric, Pore Geometry and Mineralogy Effects on Water Transport in Fractured Dolostones. Eng. Geol. 2009, 107, 1–15; https://doi.org/10.1016/j.enggeo.2009.03.009.Search in Google Scholar

37. Özvan, A., Dinçer, I., Akın, M., Oyan, V., Tapan, M. Experimental Studies on Ignimbrite and the Effect of Lichens and Capillarity on the Deterioration of Seljuk Gravestones. Eng. Geol. 2015, 185, 81–95; https://doi.org/10.1016/j.enggeo.2014.12.001.Search in Google Scholar

38. Licchelli, M., Malagodi, M., Weththimuni, M., Zanchi, C. Nanoparticles for Conservation of Bio-Calcarenite Stone. Appl. Phys. A 2014, 114, 673–683; https://doi.org/10.1007/s00339-013-7973-z.Search in Google Scholar

39. Jiang, Y., Li, L., Liu, J., Wang, R., Wang, H., Tian, Q., Li, X. Hydrophobic Films of Acrylic Emulsion by Incorporation of Fluorine-Based Copolymer Prepared through the RAFT Emulsion Copolymerization. J. Fluorine Chem. 2016, 183, 82–91; https://doi.org/10.1016/j.jfluchem.2016.01.010.Search in Google Scholar

40. Li, M., Li, Y., Xue, F., Jing, X. Water-Based Acrylate Copolymer/Silica Hybrids for Facile Preparation of Robust and Durable Superhydrophobic Coatings. Appl. Surf. Sci. 2018, 447, 489–499; https://doi.org/10.1016/j.apsusc.2018.04.008.Search in Google Scholar

41. Liu, X., Wang, Z., Zhao, C., Bu, W., Zhang, Y., Na, H. Synthesis, Characterization and Evaluation of a Fluorinated Resin Monomer with Low Water Sorption. J. Mech. Behav. Biomed. 2018, 77, 446–454; https://doi.org/10.1016/j.jmbbm.2017.09.026.Search in Google Scholar PubMed

42. Handy, L. L. Determination of Effective Capillary Pressures for Porous Media from Imbibition Data. Pet. Trans. AIME 1960, 219, 75–80; https://doi.org/10.2118/1361-g.Search in Google Scholar

43. Wang, S., Hao, J. Air Quality Management in China: Issues, Challenges, and Options. J. Environ. Sci. China 2012, 24, 2–13; https://doi.org/10.1016/s1001-0742(11)60724-9.Search in Google Scholar PubMed

44. Guney, Y., Sari, D., Cetin, M., Tuncan, M. Impact of Cyclic Wetting–Drying on Swelling Behavior of Lime-Stabilized Soil. Build. Environ. 2007, 42, 681–688; https://doi.org/10.1016/j.buildenv.2005.10.035.Search in Google Scholar

45. Zhou, X., Sang, S., Niu, Q., Zhang, K., Liu, F., Wang, W., Chang, J. Changes of Multiscale Surface Morphology and Pore Structure of Mudstone Associated with Supercritical CO2-Water Exposure at Different Times. Energy Fuels 2021, 35 (5), 4212–4223; https://doi.org/10.1021/acs.energyfuels.0c03920.Search in Google Scholar

46. Ghobadi, M. H., Babazadeh, R. An Investigation on the Effect of Accelerated Weathering on Strength and Durability of Tertiary Sandstones (Qazvin Province, Iran). Environ. Earth Sci. 2015, 73, 4237–4250; https://doi.org/10.1007/s12665-014-3708-5.Search in Google Scholar

47. Amorim, C. L. G., Lopes, R. T., Barroso, R. C., Queiroz, J. C., Alves, D. B., Perez, C. A., Schelin, H. R. Effect of Clay–Water Interactions on Clay Swelling by X-Ray Diffraction. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 580, 768–770; https://doi.org/10.1016/j.nima.2007.05.103.Search in Google Scholar

48. Cherblanc, F., Berthonneau, J., Bromblet, P., Huon, V. Influence of Water Content on the Mechanical Behaviour of Limestone: Role of the Clay Minerals Content. Rock Mech. Rock Eng. 2016, 49, 2033–2042; https://doi.org/10.1007/s00603-015-0911-y.Search in Google Scholar

49. Berthonneau, J., Bromblet, P., Cherblanc, F., Ferrage, E., Vallet, J., Grauby, O. The Spalling Decay of Building Bioclastic Limestones of Provence (South East of France): From Clay Minerals Swelling to Hydric Dilation. J. Cult. Herit. 2016, 17, 53–60; https://doi.org/10.1016/j.culher.2015.05.004.Search in Google Scholar

50. Tan, X., Chen, W., Yang, J., Cao, J. Laboratory Investigations on the Mechanical Properties Degradation of Granite under Freeze–Thaw Cycles. Cold Reg. Sci. Technol. 2011, 68, 130–138; https://doi.org/10.1016/j.coldregions.2011.05.007.Search in Google Scholar

51. Ji, Z. M., Chen, Z. J., Niu, Q. H., Wang, T. H., Wang, T. J., Chen, T. L. A calculation model of the normal coefficient of restitution based on multi-factor interaction experiments. Landslides 2021, 18, 1531–1553.10.1007/s10346-020-01556-7Search in Google Scholar

Received: 2023-07-04
Accepted: 2023-12-19
Published Online: 2024-01-04
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0158/html
Scroll to top button