Home Numerical investigation of the strength of Al/GFRP adhesive bonding under tensile loading
Article
Licensed
Unlicensed Requires Authentication

Numerical investigation of the strength of Al/GFRP adhesive bonding under tensile loading

  • Mohammad Reza Samadi ORCID logo EMAIL logo , Mohammad Hossein Alaei and Jafar Eskandari Jam
Published/Copyright: January 10, 2024
Become an author with De Gruyter Brill

Abstract

In this study, adhesive bonding of aluminum (Al) to glass fiber reinforced polymer (GFRP) was investigated using finite element analysis to optimize bond strength. Mechanical surface preparation has a great influence on the chemical properties (increasing surface energy and creating a stronger bond) and mechanical properties (creating mechanical interlocking and increasing friction) of adhesive bonding. Hence, the response surface method was employed to examine the influence of groove number (1, 3, 5), groove angle (0, 45, 90°), groove shape (V-shape, square, concave), and joint type (metal–metal, metal–composite, composite–composite) on the tensile strength of the bond. To simulate the bond behavior of Al/GFRP under different parameter conditions, the cohesive zone model was used to consider the crack growth. Optimization results obtained by the desirability function method showed that the maximum bond strength was achieved with a groove number of 1, groove shape of square, groove angle of 0°, and metal–metal joint type. The optimization results predicted by the desirability function and finite element analysis were in good agreement with those obtained by experimental tests.


Corresponding author: Mohammad Reza Samadi, Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran 1435761137, Iran, E-mail:

  1. Ethical approval: The conducted research is not related to either human or animals use.

  2. Author contributions: Mohammad Reza Samadi and Mohammad Hossein Alaei designed the experiments and Jafar Eskandari Jam carried them out. Mohammad Reza Samadi developed the model code and performed the simulations. Mohammad Reza Samadi prepared the manuscript with contributions from all co-authors. The authors applied the SDC approach for the sequence of authors.

  3. Research funding: The authors state no funding involved.

  4. Competing interests: The authors state no conflict of interest.

  5. Data availability: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

1. Alachek, I., Reboul, N., Jurkiewiez, B. Compos. Struct. 2019, 207, 148–165; https://doi.org/10.1016/j.compstruct.2018.09.013.Search in Google Scholar

2. Hu, Y., Zhang, J., Wang, L., Jiang, H., Cheng, F., Hu, X. Surf. Coat. Technol. 2022, 432, 128072; https://doi.org/10.1016/j.surfcoat.2021.128072.Search in Google Scholar

3. Chen, D., Luo, Q., Meng, M., Li, Q., Sun, G. Compos. B Eng. 2019, 176, 107191; https://doi.org/10.1016/j.compositesb.2019.107191.Search in Google Scholar

4. Reis, P. N. B., Neto, M. A., Amaro, A. M. Compos. Struct. 2018, 188, 48–54; https://doi.org/10.1016/j.compstruct.2018.01.001.Search in Google Scholar

5. Tan, B., Hu, Y., Yuan, B., Hu, X., Huang, Z. Int. J. Adhes. Adhes. 2021, 110, 102952; https://doi.org/10.1016/j.ijadhadh.2021.102952.Search in Google Scholar

6. Pečnik, J. P., Gavrić, I., Sebera, V., Kržan, M., Kwiecień, A., Zając, B., Azinović, B. Eng. Struct. 2021, 247, 113125; https://doi.org/10.1016/j.engstruct.2021.113125.Search in Google Scholar

7. Saleema, N., Sarkar, D. K., Paynter, R. W., Gallant, D., Eskandarian, M. Appl. Surf. Sci. 2021, 261, 742–748; https://doi.org/10.1016/j.apsusc.2012.08.091.Search in Google Scholar

8. Sun, G., Xia, X., Liu, X., Luo, Q., Li, Q. Thin-Walled Struct. 2021, 164, 107657; https://doi.org/10.1016/j.tws.2021.107657.Search in Google Scholar

9. Rudawska, A. J. Adhes. 2020, 96, 402–422; https://doi.org/10.1080/00218464.2019.1656615.Search in Google Scholar

10. Jeevi, G., Kumar Nayak, S., Abdul Kader, M. J. Adhes. Sci. Technol. 2019, 33, 1497–1520; https://doi.org/10.1080/01694243.2018.1543528.Search in Google Scholar

11. Park, Y. B., Song, M. G., Kim, J. J., Kweon, J. H., Choi, J. H. Compos. Struct. 2010, 92, 2173–2180; https://doi.org/10.1016/j.compstruct.2009.09.009.Search in Google Scholar

12. Williams, T. S., Yu, H., Hicks, R. F. J. Adhes. Sci. Technol. 2014, 28, 653–674; https://doi.org/10.1080/01694243.2013.859646.Search in Google Scholar

13. Carnes, M. D., Mtenga, P. V. J. Reinf. Plast. Compos. 2015, 34, 1167–1178; https://doi.org/10.1177/0731684415587543.Search in Google Scholar

14. Rakgate, S. M., Dundu, M. Struct. 2018, 14, 348–357; https://doi.org/10.1016/j.istruc.2018.04.004.Search in Google Scholar

15. Sathiyamurthy, R., Duraiselvam, M. Mater. Manuf. Process. 2019, 34, 1296–1305; https://doi.org/10.1080/10426914.2019.1644453.Search in Google Scholar

16. Von Der Leeden, M. C., Frens, G. J. Adv. Eng. Mater. 2002, 4, 280–289.10.1002/1527-2648(20020503)4:5<280::AID-ADEM280>3.0.CO;2-ZSearch in Google Scholar

17. Hu, Y., Yuan, B., Cheng, F., Hu, X. Compos. B Eng. 2019, 178, 107478; https://doi.org/10.1016/j.compositesb.2019.107478.Search in Google Scholar

18. Paz, E., Narbón, J. J., Abenojar, J., Cledera, M., del Real, J. C. J. Adhes. 2016, 92, 877–891; https://doi.org/10.1080/00218464.2015.1051221.Search in Google Scholar

19. Repeta, V., Kukura, Y., Shibanov, V., Myklushka, I., Kukura, V. J. Print Media Technol. Res. 2020, 9, 177–184.Search in Google Scholar

20. Reddy, N. S., Jinaga, U. K., Charuku, B. R., Penumakala, P. K., Siva Prasad, A. V. S. Int. J. Adhes. Adhes. 2019, 90, 97–105; https://doi.org/10.1016/j.ijadhadh.2019.02.004.Search in Google Scholar

21. Xu, W., Wei, Y. Int. J. Adhes. Adhes. 2012, 34, 80–92.Search in Google Scholar

22. Choupani, N. Int. J. Adhes. Adhes. 2009, 29, 761–773.Search in Google Scholar

23. Ribeiro, T. E. A., Campilho, R. D. S. G., da Silva, L. F. M., Goglio, L. Compos. Struct. 2016, 36, 25–33.10.1016/j.compstruct.2015.09.054Search in Google Scholar

24. Ogawa, Y., Naito, K., Harada, K., Oguma, H. Int. J. Adhes. Adhes. 2022, 117, 103172; https://doi.org/10.1016/j.ijadhadh.2022.103172.Search in Google Scholar

25. Marami, G., Nazari, S. A., Faghidian, S. A., Vakili-Tahami, F., Etemadi, S. Int. J. Adhes. Adhes. 2016, 70, 277–286; https://doi.org/10.1016/j.ijadhadh.2016.07.014.Search in Google Scholar

26. Katsivalis, I., Thomsen, O. T., Feih, S., Achintha, M. Int. J. Adhes. Adhes. 2020, 97, 102479; https://doi.org/10.1016/j.ijadhadh.2019.102479.Search in Google Scholar

27. Rocha, A. V. M., Akhavan-Safar, A., Carbas, R., Marques, E. A. S., Goyal, R., El-zein, M., da Silva, L. F. M. Theor. Appl. Fract. Mech. 2020, 106, 102493; https://doi.org/10.1016/j.tafmec.2020.102493.Search in Google Scholar

28. Pisavadia, H., Toussaint, G., Dolez, P., Hogan, J. D. Int. J. Impact Eng. 2022, 170, 104364; https://doi.org/10.1016/j.ijimpeng.2022.104364.Search in Google Scholar

29. Khoramishad, H., Ebrahimijamal, M., Fasihi, M. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 1905–1916; https://doi.org/10.1111/ffe.12612.Search in Google Scholar

30. Polat, S., Avci, A., Ekrem, M. Compos. Struct. 2018, 194, 624–632; https://doi.org/10.1016/j.compstruct.2018.04.043.Search in Google Scholar

31. Da Silva, L. F., Ferreira, N. M. A. J., Richter-Trummer, V., Marques, E. A. S. Int. J. Adhes. Adhes. 2010, 30, 735–743; https://doi.org/10.1016/j.ijadhadh.2010.07.005.Search in Google Scholar

32. Kim, T. H., Kweon, J. H., Choi, J. H. J. Reinf. Plast. Compos. 2008, 27, 1071–1081; https://doi.org/10.1177/0731684407087074.Search in Google Scholar

33. Akman, E., Bora, M. O., Çoban, O., Oztoprak, B. G. Int. J. Adhes. Adhes. 2021, 107, 102830; https://doi.org/10.1016/j.ijadhadh.2021.102830.Search in Google Scholar

34. Xie, Y., Yang, B., Lu, L., Wan, Z., Liu, X. Compos. Struct. 2020, 232, 111559; https://doi.org/10.1016/j.compstruct.2019.111559.Search in Google Scholar

35. Di Bella, G., Alderucci, T., Borsellino, C., Miranda, R., Valenza, A. J. Adhes. Sci. Technol. 2023, 37, 945–960; https://doi.org/10.1080/01694243.2022.2054603.Search in Google Scholar

36. Mohammadi Ghahsareh, F., Mostofinejad, D. Constr. Build. Mater. 2022, 342, 127980; https://doi.org/10.1016/j.conbuildmat.2022.127980.Search in Google Scholar

37. Li, H., Zhu, Y., Meng, X., Li, S., Du, W., Qin, X. J. Adhes. 2023, 99, 1744–1767; https://doi.org/10.1080/00218464.2022.2158731.Search in Google Scholar

38. Ayaz, M., Khandaei, M., Vahidshad, Y. J. Adhes. Sci. Technol. 2021, 35, 2202–2229; https://doi.org/10.1080/01694243.2021.1882765.Search in Google Scholar

39. Afshari, M., Taher, F., Samadi, M. R., Ayaz, M. Opt. Laser Technol. 2022, 156, 108537; https://doi.org/10.1016/j.optlastec.2022.108537.Search in Google Scholar

Received: 2023-11-29
Accepted: 2023-12-19
Published Online: 2024-01-10
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0273/html
Scroll to top button