Abstract
In this study, adhesive bonding of aluminum (Al) to glass fiber reinforced polymer (GFRP) was investigated using finite element analysis to optimize bond strength. Mechanical surface preparation has a great influence on the chemical properties (increasing surface energy and creating a stronger bond) and mechanical properties (creating mechanical interlocking and increasing friction) of adhesive bonding. Hence, the response surface method was employed to examine the influence of groove number (1, 3, 5), groove angle (0, 45, 90°), groove shape (V-shape, square, concave), and joint type (metal–metal, metal–composite, composite–composite) on the tensile strength of the bond. To simulate the bond behavior of Al/GFRP under different parameter conditions, the cohesive zone model was used to consider the crack growth. Optimization results obtained by the desirability function method showed that the maximum bond strength was achieved with a groove number of 1, groove shape of square, groove angle of 0°, and metal–metal joint type. The optimization results predicted by the desirability function and finite element analysis were in good agreement with those obtained by experimental tests.
-
Ethical approval: The conducted research is not related to either human or animals use.
-
Author contributions: Mohammad Reza Samadi and Mohammad Hossein Alaei designed the experiments and Jafar Eskandari Jam carried them out. Mohammad Reza Samadi developed the model code and performed the simulations. Mohammad Reza Samadi prepared the manuscript with contributions from all co-authors. The authors applied the SDC approach for the sequence of authors.
-
Research funding: The authors state no funding involved.
-
Competing interests: The authors state no conflict of interest.
-
Data availability: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
1. Alachek, I., Reboul, N., Jurkiewiez, B. Compos. Struct. 2019, 207, 148–165; https://doi.org/10.1016/j.compstruct.2018.09.013.Search in Google Scholar
2. Hu, Y., Zhang, J., Wang, L., Jiang, H., Cheng, F., Hu, X. Surf. Coat. Technol. 2022, 432, 128072; https://doi.org/10.1016/j.surfcoat.2021.128072.Search in Google Scholar
3. Chen, D., Luo, Q., Meng, M., Li, Q., Sun, G. Compos. B Eng. 2019, 176, 107191; https://doi.org/10.1016/j.compositesb.2019.107191.Search in Google Scholar
4. Reis, P. N. B., Neto, M. A., Amaro, A. M. Compos. Struct. 2018, 188, 48–54; https://doi.org/10.1016/j.compstruct.2018.01.001.Search in Google Scholar
5. Tan, B., Hu, Y., Yuan, B., Hu, X., Huang, Z. Int. J. Adhes. Adhes. 2021, 110, 102952; https://doi.org/10.1016/j.ijadhadh.2021.102952.Search in Google Scholar
6. Pečnik, J. P., Gavrić, I., Sebera, V., Kržan, M., Kwiecień, A., Zając, B., Azinović, B. Eng. Struct. 2021, 247, 113125; https://doi.org/10.1016/j.engstruct.2021.113125.Search in Google Scholar
7. Saleema, N., Sarkar, D. K., Paynter, R. W., Gallant, D., Eskandarian, M. Appl. Surf. Sci. 2021, 261, 742–748; https://doi.org/10.1016/j.apsusc.2012.08.091.Search in Google Scholar
8. Sun, G., Xia, X., Liu, X., Luo, Q., Li, Q. Thin-Walled Struct. 2021, 164, 107657; https://doi.org/10.1016/j.tws.2021.107657.Search in Google Scholar
9. Rudawska, A. J. Adhes. 2020, 96, 402–422; https://doi.org/10.1080/00218464.2019.1656615.Search in Google Scholar
10. Jeevi, G., Kumar Nayak, S., Abdul Kader, M. J. Adhes. Sci. Technol. 2019, 33, 1497–1520; https://doi.org/10.1080/01694243.2018.1543528.Search in Google Scholar
11. Park, Y. B., Song, M. G., Kim, J. J., Kweon, J. H., Choi, J. H. Compos. Struct. 2010, 92, 2173–2180; https://doi.org/10.1016/j.compstruct.2009.09.009.Search in Google Scholar
12. Williams, T. S., Yu, H., Hicks, R. F. J. Adhes. Sci. Technol. 2014, 28, 653–674; https://doi.org/10.1080/01694243.2013.859646.Search in Google Scholar
13. Carnes, M. D., Mtenga, P. V. J. Reinf. Plast. Compos. 2015, 34, 1167–1178; https://doi.org/10.1177/0731684415587543.Search in Google Scholar
14. Rakgate, S. M., Dundu, M. Struct. 2018, 14, 348–357; https://doi.org/10.1016/j.istruc.2018.04.004.Search in Google Scholar
15. Sathiyamurthy, R., Duraiselvam, M. Mater. Manuf. Process. 2019, 34, 1296–1305; https://doi.org/10.1080/10426914.2019.1644453.Search in Google Scholar
16. Von Der Leeden, M. C., Frens, G. J. Adv. Eng. Mater. 2002, 4, 280–289.10.1002/1527-2648(20020503)4:5<280::AID-ADEM280>3.0.CO;2-ZSearch in Google Scholar
17. Hu, Y., Yuan, B., Cheng, F., Hu, X. Compos. B Eng. 2019, 178, 107478; https://doi.org/10.1016/j.compositesb.2019.107478.Search in Google Scholar
18. Paz, E., Narbón, J. J., Abenojar, J., Cledera, M., del Real, J. C. J. Adhes. 2016, 92, 877–891; https://doi.org/10.1080/00218464.2015.1051221.Search in Google Scholar
19. Repeta, V., Kukura, Y., Shibanov, V., Myklushka, I., Kukura, V. J. Print Media Technol. Res. 2020, 9, 177–184.Search in Google Scholar
20. Reddy, N. S., Jinaga, U. K., Charuku, B. R., Penumakala, P. K., Siva Prasad, A. V. S. Int. J. Adhes. Adhes. 2019, 90, 97–105; https://doi.org/10.1016/j.ijadhadh.2019.02.004.Search in Google Scholar
21. Xu, W., Wei, Y. Int. J. Adhes. Adhes. 2012, 34, 80–92.Search in Google Scholar
22. Choupani, N. Int. J. Adhes. Adhes. 2009, 29, 761–773.Search in Google Scholar
23. Ribeiro, T. E. A., Campilho, R. D. S. G., da Silva, L. F. M., Goglio, L. Compos. Struct. 2016, 36, 25–33.10.1016/j.compstruct.2015.09.054Search in Google Scholar
24. Ogawa, Y., Naito, K., Harada, K., Oguma, H. Int. J. Adhes. Adhes. 2022, 117, 103172; https://doi.org/10.1016/j.ijadhadh.2022.103172.Search in Google Scholar
25. Marami, G., Nazari, S. A., Faghidian, S. A., Vakili-Tahami, F., Etemadi, S. Int. J. Adhes. Adhes. 2016, 70, 277–286; https://doi.org/10.1016/j.ijadhadh.2016.07.014.Search in Google Scholar
26. Katsivalis, I., Thomsen, O. T., Feih, S., Achintha, M. Int. J. Adhes. Adhes. 2020, 97, 102479; https://doi.org/10.1016/j.ijadhadh.2019.102479.Search in Google Scholar
27. Rocha, A. V. M., Akhavan-Safar, A., Carbas, R., Marques, E. A. S., Goyal, R., El-zein, M., da Silva, L. F. M. Theor. Appl. Fract. Mech. 2020, 106, 102493; https://doi.org/10.1016/j.tafmec.2020.102493.Search in Google Scholar
28. Pisavadia, H., Toussaint, G., Dolez, P., Hogan, J. D. Int. J. Impact Eng. 2022, 170, 104364; https://doi.org/10.1016/j.ijimpeng.2022.104364.Search in Google Scholar
29. Khoramishad, H., Ebrahimijamal, M., Fasihi, M. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 1905–1916; https://doi.org/10.1111/ffe.12612.Search in Google Scholar
30. Polat, S., Avci, A., Ekrem, M. Compos. Struct. 2018, 194, 624–632; https://doi.org/10.1016/j.compstruct.2018.04.043.Search in Google Scholar
31. Da Silva, L. F., Ferreira, N. M. A. J., Richter-Trummer, V., Marques, E. A. S. Int. J. Adhes. Adhes. 2010, 30, 735–743; https://doi.org/10.1016/j.ijadhadh.2010.07.005.Search in Google Scholar
32. Kim, T. H., Kweon, J. H., Choi, J. H. J. Reinf. Plast. Compos. 2008, 27, 1071–1081; https://doi.org/10.1177/0731684407087074.Search in Google Scholar
33. Akman, E., Bora, M. O., Çoban, O., Oztoprak, B. G. Int. J. Adhes. Adhes. 2021, 107, 102830; https://doi.org/10.1016/j.ijadhadh.2021.102830.Search in Google Scholar
34. Xie, Y., Yang, B., Lu, L., Wan, Z., Liu, X. Compos. Struct. 2020, 232, 111559; https://doi.org/10.1016/j.compstruct.2019.111559.Search in Google Scholar
35. Di Bella, G., Alderucci, T., Borsellino, C., Miranda, R., Valenza, A. J. Adhes. Sci. Technol. 2023, 37, 945–960; https://doi.org/10.1080/01694243.2022.2054603.Search in Google Scholar
36. Mohammadi Ghahsareh, F., Mostofinejad, D. Constr. Build. Mater. 2022, 342, 127980; https://doi.org/10.1016/j.conbuildmat.2022.127980.Search in Google Scholar
37. Li, H., Zhu, Y., Meng, X., Li, S., Du, W., Qin, X. J. Adhes. 2023, 99, 1744–1767; https://doi.org/10.1080/00218464.2022.2158731.Search in Google Scholar
38. Ayaz, M., Khandaei, M., Vahidshad, Y. J. Adhes. Sci. Technol. 2021, 35, 2202–2229; https://doi.org/10.1080/01694243.2021.1882765.Search in Google Scholar
39. Afshari, M., Taher, F., Samadi, M. R., Ayaz, M. Opt. Laser Technol. 2022, 156, 108537; https://doi.org/10.1016/j.optlastec.2022.108537.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Biopolymer-based nanocomposites for application in biomedicine: a review
- Preparation and Assembly
- CsxWO3-doped PEG/sweet potato form-stable composites for light-thermal conversion and energy storage
- Preparation, characterization, and application of fluorinated acrylate copolymer for the conservation of stone building heritages in Putuo Zongcheng Temple, China
- Engineering and Processing
- Study on the influence of in-mold sequential injection molding process parameters on mechanical properties of self-reinforced single composites
- Numerical investigation of the strength of Al/GFRP adhesive bonding under tensile loading
Articles in the same Issue
- Frontmatter
- Material Properties
- Biopolymer-based nanocomposites for application in biomedicine: a review
- Preparation and Assembly
- CsxWO3-doped PEG/sweet potato form-stable composites for light-thermal conversion and energy storage
- Preparation, characterization, and application of fluorinated acrylate copolymer for the conservation of stone building heritages in Putuo Zongcheng Temple, China
- Engineering and Processing
- Study on the influence of in-mold sequential injection molding process parameters on mechanical properties of self-reinforced single composites
- Numerical investigation of the strength of Al/GFRP adhesive bonding under tensile loading