Preparation, characterization, and application of fluorinated acrylate copolymer for the conservation of stone building heritages in Putuo Zongcheng Temple, China
Abstract
To prevent the weathering deterioration of stone building heritages in Putuo Zongcheng Temple, the fluorinated acrylate copolymer was prepared with methyl methacrylate, n-butyl acrylate, and 2,2,3,4,4,4-hexafluorobutyl methacrylate as monomers. The structure and surface morphology of the copolymer were described by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The antiaging of the copolymer was studied by the ultraviolet aging test; the contact angle and imbibition spontaneous tests were performed to estimate the wettability alteration of the copolymer emulsion. Results show that the fluorinated copolymer with 32.54 % HFMA content possesses optimal aging resistance and superb hydrophobicity. The contact angles of coated samples range from 96.90° to 125.80°. Considering the influence of water on rock weathering, the fluorinated copolymer coating is a potential method to avoid the degrading of stone heritages.
Funding source: School-level Fund Project of Hebei Normal University for Nationalities
Award Identifier / Grant number: (Grant No. QN2019002)
Funding source: the Natural Science Foundation of Hebei Province
Award Identifier / Grant number: (Grant No. E2019101012)
-
Research ethics: Not applicable.
-
Author contributions: ZW Methodology; CM Writing - Review & Editing; QN Writing - Original Draft; CW Visualization; YW Formal analysis. The author(s) have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: All other authors state no conflict of interest.
-
Research funding: This work was sponsored by the School-level Fund Project of Hebei Normal University for Nationalities (Grant No. QN2019002) and the Natural Science Foundation of Hebei Province (Grant No. E2019101012).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Chelazzi, D., Poggi, G., Jaidar, Y., Toccafondi, N., Giorgi, R., Baglioni, P. Hydroxide Nanoparticles for Cultural Heritage: Consolidation and Protection of Wall Paintings and Carbonate Materials. J. Colloid Interf. Sci. 2013, 392, 42–49; https://doi.org/10.1016/j.jcis.2012.09.069.Suche in Google Scholar PubMed
2. Zoghlami, K., Martín-Martín, J. D., Gómez-Gras, D., Navarro, A., Parcerisa, D., Rosell, J. R. The Building Stone of the Roman City of Dougga (Tunisia): Provenance, Petrophysical Characterisation and Durability. Cr. Geosci. 2017, 349, 402–411; https://doi.org/10.1016/j.crte.2017.09.017.Suche in Google Scholar
3. La Russa, M. F., Barone, G., Belfiore, C. M., Mazzoleni, P., Pezzino, A. Application of Protective Products to “Noto” Calcarenite (South-Eastern Sicily): A Case Study for the Conservation of Stone Materials. Environ. Earth Sci. 2011, 62, 1263–1272; https://doi.org/10.1007/s12665-010-0614-3.Suche in Google Scholar
4. Niu, Q., Cao, L., Sang, S., Wang, W., Zhou, X., Yuan, W., Ji, Z., Chang, J., Li, M. Experimental Study on the Softening Effect and Mechanism of Anthracite with CO2 Injection. Int. J. Rock Mech. Mining Sci. 2021, 138, 104614; https://doi.org/10.1016/j.ijrmms.2021.104614.Suche in Google Scholar
5. Niu, Q. H., Wang, Q. Z., Wang, W., Chang, J. F., Chen, M. Y., Wang, H. C., Cai, N., Fan, L. Responses of Multi-Scale Microstructures, Physical-Mechanical and Hydraulic Characteristics of Roof Rocks Caused by the Supercritical CO2-Water-Rock Reaction. Energy 2022, 238, 121727; https://doi.org/10.1016/j.energy.2021.121727.Suche in Google Scholar
6. Wu, Y., Zhang, J., Wang, L., Wang, Y. A Rock-Weathering Bacterium Isolated from Rock Surface and its Role in Ecological Restoration on Exposed Carbonate Rocks. Ecol. Eng. 2017, 101, 162–169; https://doi.org/10.1016/j.ecoleng.2017.01.023.Suche in Google Scholar
7. Niu, Q. H., Cao, L. W., Sang, S. X., Wang, W., Yuan, W., Chang, J. F., Jia, X. J., Zheng, W. M., Zhang, Z. X. A Small-Scale Experimental Study of CO2 Enhanced Injectivity Methods of the High-Rank Coal. Petrol. Sci. 2021, 18(5), 1427–1440; https://doi.org/10.1016/j.petsci.2021.08.006.Suche in Google Scholar
8. Kanth, A. P., Soni, A. K. Application of Nanocomposites for Conservation of Materials of Cultural Heritage. J. Cult. Herit. 2023, 59, 120–130; https://doi.org/10.1016/j.culher.2022.11.010.Suche in Google Scholar
9. Khallaf, M. K., El-Midany, A. A., El-Mofty, S. E. Influence of Acrylic Coatings on the Interfacial, Physical, and Mechanical Properties of Stone-Based Monuments. Prog. Org. Coat. 2011, 72, 592–598; https://doi.org/10.1016/j.porgcoat.2011.06.021.Suche in Google Scholar
10. Zhang, H., Liu, Q., Liu, T., Zhang, B. The Preservation Damage of Hydrophobic Polymer Coating Materials in Conservation of Stone Relics. Prog. Org. Coat. 2013, 76, 1127–1134; https://doi.org/10.1016/j.porgcoat.2013.03.018.Suche in Google Scholar
11. Dong, R., Liu, L. Preparation and Properties of Acrylic Resin Coating Modified by Functional Graphene Oxide. Appl. Surf. Sci. 2016, 368, 378–387; https://doi.org/10.1016/j.apsusc.2016.01.275.Suche in Google Scholar
12. Buj, O., Gisbert, J. Influence of Pore Morphology on the Durability of Sedimentary Building Stones from Aragon (Spain) Subjected to Standard Salt Decay Tests. Environ. Earth Sci. 2010, 61, 1327–1336; https://doi.org/10.1007/s12665-010-0451-4.Suche in Google Scholar
13. Charola, A. E. Water-Repellent Treatments for Building Stones: A Practical Overview. APT Bull. 1995, 26, 10–17; https://doi.org/10.2307/1504480.Suche in Google Scholar
14. Melo, M. J., Bracci, S., Camaiti, M., Chiantore, O., Piacenti, F. Photodegradation of Acrylic Resins Used in the Conservation of Stone. Polym. Degrad. Stab. 1999, 66, 23–30; https://doi.org/10.1016/s0141-3910(99)00048-8.Suche in Google Scholar
15. Pintus, V., Wei, S., Schreiner, M. Accelerated UV Ageing Studies of Acrylic, Alkyd, and Polyvinyl Acetate Paints: influence of Inorganic Pigments. Microchem. J. 2016, 124, 949–961; https://doi.org/10.1016/j.microc.2015.07.009.Suche in Google Scholar
16. Haas, K. H., Amberg-Schwab, S., Rose, K., Schottner, G. Functionalized Coatings Based on Inorganic–Organic Polymers (ORMOCER®; S) and Their Combination with Vapor Deposited Inorganic Thin Films. Surf. Coat. Technol. 1999, 111, 72–79; https://doi.org/10.1016/s0257-8972(98)00711-7.Suche in Google Scholar
17. Sadat Shojai, M., Ershad Langroudi, A. Polymeric Coatings for Protection of Historic Monuments: Opportunities and Challenges. J. Appl. Polym. Sci. 2010, 112, 2535–2551; https://doi.org/10.1002/app.29801.Suche in Google Scholar
18. Chiantore, O., Lazzari, M. Photo-Oxidative Stability of Paraloid Acrylic Protective Polymers. Polymer 2001, 42, 17–27; https://doi.org/10.1016/s0032-3861(00)00327-x.Suche in Google Scholar
19. Yang, X., Zhu, L., Zhang, Y., Chen, Y., Bao, B., Xu, J., Zhou, W. Surface Properties and Self-Cleaning Ability of the Fluorinated Acrylate Coatings Modified with Dodecafluoroheptyl Methacrylate through Two Adding Ways. Appl. Surf. Sci. 2014, 295, 44–49; https://doi.org/10.1016/j.apsusc.2013.12.177.Suche in Google Scholar
20. He, L., Liang, J., Zhao, X., Li, W., Luo, H. Preparation and Comparative Evaluation of Well-Defined Fluorinated Acrylic Copolymer Latex and Solution for Ancient Stone Protection. Prog. Org. Coat. 2010, 69, 352–358; https://doi.org/10.1016/j.porgcoat.2010.07.008.Suche in Google Scholar
21. Saïdi, S., Guittarda, F., Géribaldi, S., Géribaldi, S. Synthesis and Characterization of Copolymers Based on Styrene and Partially Fluorinated Acrylates. Eur. Polym. J. 2006, 42, 702–710; https://doi.org/10.1016/j.eurpolymj.2005.09.012.Suche in Google Scholar
22. Coulson, S. R., Woodward, I. S., Badyal, J. P. S., Brewer, S. A., Willis, C. Plasmachemical Functionalization of Solid Surfaces with Low Surface Energy Perfluorocarbon Chains. Langmuir 2000, 16, 6287–6293; https://doi.org/10.1021/la0001676.Suche in Google Scholar
23. Ciardelli, F., Aglietto, M., Montagnini Di Mirabello, L., Passaglia, E., Giancristoforo, S., Castelvetro, V., Ruggeri, G. New Fluorinated Acrylic Polymers for Improving Weatherability of Building Stone Materials. Prog. Org. Coat. 1997, 32, 43–50; https://doi.org/10.1016/s0300-9440(97)00063-5.Suche in Google Scholar
24. Toniolo, L., Poli, T., Castelvetro, V., Manariti, A., Chiantore, O., Lazzari, M. Tailoring New Fluorinated Acrylic Copolymers as Protective Coatings for Marble. J. Cult. Herit. 2002, 3, 309–316; https://doi.org/10.1016/s1296-2074(02)01240-2.Suche in Google Scholar
25. Ji, Z. M., Chen, Z. J., Pan, J. N., Niu, Q. H. A Novel Method for Estimating Methane Emissions from Underground Coal Mines: The Yanma Coal Mine, China. Atmos. Environ. 2017, 170, 96–107; https://doi.org/10.1016/j.atmosenv.2017.09.052.Suche in Google Scholar
26. Bhargava, S., Kubota, M., Lewis, R. D., Advani, S. G., Prasad, A. K., Deitzel, J. M. Ultraviolet, Water, and Thermal Aging Studies of a Waterborne Polyurethane Elastomer-Based High Reflectivity Coating. Prog. Org. Coat. 2015, 79, 75–82; https://doi.org/10.1016/j.porgcoat.2014.11.005.Suche in Google Scholar
27. Chen, L., Shi, H., Wu, H., Xiang, J. Preparation and Characterization of a Novel Fluorinated Acrylate Resin. J. Fluorine Chem. 2010, 131, 731–737; https://doi.org/10.1016/j.jfluchem.2010.03.009.Suche in Google Scholar
28. Niu, Q., Pan, J., Cao, L., Ji, Z., Wang, H., Wang, K., Wang, Z. The Evolution and Formation Mechanisms of Closed Pores in Coal. Fuel 2017, 200, 555–563; https://doi.org/10.1016/j.fuel.2017.03.084.Suche in Google Scholar
29. Bongiovanni, R., Pollicino, N., Gozzelino, G., Malucelli, G., Priola, A., Ameduri, B. Surface Properties of Networks Containing Fluorinated Acrylic Monomers. Polym. Advan. Technol. 2015, 7, 403–408; https://doi.org/10.1002/(sici)1099-1581(199605)7:5/6<403::aid-pat502>3.0.co;2-0.10.1002/(SICI)1099-1581(199605)7:5/6<403::AID-PAT502>3.3.CO;2-SSuche in Google Scholar
30. Andrady, A. L., Hamid, S. H., Hu, X., Torikai, A. Effects of Increased Solar Ultraviolet Radiation on Materials. J. Photochem. Photobiol. B Biol. 1998, 46, 96–103; https://doi.org/10.1016/s1011-1344(98)00188-2.Suche in Google Scholar
31. Montagna, L. S., Catto, A. L., Camargo Forte, M. M. D., Chiellini, E., Corti, A., Morelli, A., Campomanes Santana, R. M. Comparative Assessment of Degradation in Aqueous Medium of Polypropylene Films Doped with Transition Metal Free (Experimental) and Transition Metal Containing (Commercial) Pro-oxidant/Pro-degradant Additives after Exposure to Controlled UV Radiation. Polym. Degrad. Stab. 2015, 120, 186–192; https://doi.org/10.1016/j.polymdegradstab.2015.06.019.Suche in Google Scholar
32. Feng, C., Kong, Y., Jiang, G., Yang, J., Pu, C., Zhang, Y. Wettability Modification of Rock Cores by Fluorinated Copolymer Emulsion for the Enhancement of Gas and Oil Recovery. Appl. Surf. Sci. 2012, 258, 7075–7081; https://doi.org/10.1016/j.apsusc.2012.03.180.Suche in Google Scholar
33. Wang, H., Cheng, X., Tian, J., Li, T., Wang, W., Pan, J., Niu, Q., Feng, S., Hao, H., Zhang, Y. Permeability Enhancement of Low Rank Coal through Acidization Using H2S Solution: an Experimental Study in the Kuqa-Bay Coalfield, Xinjiang, China. J. Petrol. Sci. Eng. 2020, 185, 106476; https://doi.org/10.1016/j.petrol.2019.106476.Suche in Google Scholar
34. Ling, S., Wu, X., Zhao, S., Liao, X. Evolution of Porosity and Clay Mineralogy Associated with Chemical Weathering of Black Shale: A Case Study of Lower Cambrian Black Shale in Chongqing, China. J. Geochem. Explor. 2018, 188, 326–339; https://doi.org/10.1016/j.gexplo.2018.02.002.Suche in Google Scholar
35. Momeni, A. A., Khanlari, G. R., Heidari, M., Sepahi, A. A., Bazvand, E. New Engineering Geological Weathering Classifications for Granitoid Rocks. Eng. Geol. 2015, 185, 43–51; https://doi.org/10.1016/j.enggeo.2014.11.012.Suche in Google Scholar
36. Cueto, N., Benavente, D., Martínez-Martínez, J., García-Del-Cura, M. A. Rock Fabric, Pore Geometry and Mineralogy Effects on Water Transport in Fractured Dolostones. Eng. Geol. 2009, 107, 1–15; https://doi.org/10.1016/j.enggeo.2009.03.009.Suche in Google Scholar
37. Özvan, A., Dinçer, I., Akın, M., Oyan, V., Tapan, M. Experimental Studies on Ignimbrite and the Effect of Lichens and Capillarity on the Deterioration of Seljuk Gravestones. Eng. Geol. 2015, 185, 81–95; https://doi.org/10.1016/j.enggeo.2014.12.001.Suche in Google Scholar
38. Licchelli, M., Malagodi, M., Weththimuni, M., Zanchi, C. Nanoparticles for Conservation of Bio-Calcarenite Stone. Appl. Phys. A 2014, 114, 673–683; https://doi.org/10.1007/s00339-013-7973-z.Suche in Google Scholar
39. Jiang, Y., Li, L., Liu, J., Wang, R., Wang, H., Tian, Q., Li, X. Hydrophobic Films of Acrylic Emulsion by Incorporation of Fluorine-Based Copolymer Prepared through the RAFT Emulsion Copolymerization. J. Fluorine Chem. 2016, 183, 82–91; https://doi.org/10.1016/j.jfluchem.2016.01.010.Suche in Google Scholar
40. Li, M., Li, Y., Xue, F., Jing, X. Water-Based Acrylate Copolymer/Silica Hybrids for Facile Preparation of Robust and Durable Superhydrophobic Coatings. Appl. Surf. Sci. 2018, 447, 489–499; https://doi.org/10.1016/j.apsusc.2018.04.008.Suche in Google Scholar
41. Liu, X., Wang, Z., Zhao, C., Bu, W., Zhang, Y., Na, H. Synthesis, Characterization and Evaluation of a Fluorinated Resin Monomer with Low Water Sorption. J. Mech. Behav. Biomed. 2018, 77, 446–454; https://doi.org/10.1016/j.jmbbm.2017.09.026.Suche in Google Scholar PubMed
42. Handy, L. L. Determination of Effective Capillary Pressures for Porous Media from Imbibition Data. Pet. Trans. AIME 1960, 219, 75–80; https://doi.org/10.2118/1361-g.Suche in Google Scholar
43. Wang, S., Hao, J. Air Quality Management in China: Issues, Challenges, and Options. J. Environ. Sci. China 2012, 24, 2–13; https://doi.org/10.1016/s1001-0742(11)60724-9.Suche in Google Scholar PubMed
44. Guney, Y., Sari, D., Cetin, M., Tuncan, M. Impact of Cyclic Wetting–Drying on Swelling Behavior of Lime-Stabilized Soil. Build. Environ. 2007, 42, 681–688; https://doi.org/10.1016/j.buildenv.2005.10.035.Suche in Google Scholar
45. Zhou, X., Sang, S., Niu, Q., Zhang, K., Liu, F., Wang, W., Chang, J. Changes of Multiscale Surface Morphology and Pore Structure of Mudstone Associated with Supercritical CO2-Water Exposure at Different Times. Energy Fuels 2021, 35 (5), 4212–4223; https://doi.org/10.1021/acs.energyfuels.0c03920.Suche in Google Scholar
46. Ghobadi, M. H., Babazadeh, R. An Investigation on the Effect of Accelerated Weathering on Strength and Durability of Tertiary Sandstones (Qazvin Province, Iran). Environ. Earth Sci. 2015, 73, 4237–4250; https://doi.org/10.1007/s12665-014-3708-5.Suche in Google Scholar
47. Amorim, C. L. G., Lopes, R. T., Barroso, R. C., Queiroz, J. C., Alves, D. B., Perez, C. A., Schelin, H. R. Effect of Clay–Water Interactions on Clay Swelling by X-Ray Diffraction. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 580, 768–770; https://doi.org/10.1016/j.nima.2007.05.103.Suche in Google Scholar
48. Cherblanc, F., Berthonneau, J., Bromblet, P., Huon, V. Influence of Water Content on the Mechanical Behaviour of Limestone: Role of the Clay Minerals Content. Rock Mech. Rock Eng. 2016, 49, 2033–2042; https://doi.org/10.1007/s00603-015-0911-y.Suche in Google Scholar
49. Berthonneau, J., Bromblet, P., Cherblanc, F., Ferrage, E., Vallet, J., Grauby, O. The Spalling Decay of Building Bioclastic Limestones of Provence (South East of France): From Clay Minerals Swelling to Hydric Dilation. J. Cult. Herit. 2016, 17, 53–60; https://doi.org/10.1016/j.culher.2015.05.004.Suche in Google Scholar
50. Tan, X., Chen, W., Yang, J., Cao, J. Laboratory Investigations on the Mechanical Properties Degradation of Granite under Freeze–Thaw Cycles. Cold Reg. Sci. Technol. 2011, 68, 130–138; https://doi.org/10.1016/j.coldregions.2011.05.007.Suche in Google Scholar
51. Ji, Z. M., Chen, Z. J., Niu, Q. H., Wang, T. H., Wang, T. J., Chen, T. L. A calculation model of the normal coefficient of restitution based on multi-factor interaction experiments. Landslides 2021, 18, 1531–1553.10.1007/s10346-020-01556-7Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Biopolymer-based nanocomposites for application in biomedicine: a review
- Preparation and Assembly
- CsxWO3-doped PEG/sweet potato form-stable composites for light-thermal conversion and energy storage
- Preparation, characterization, and application of fluorinated acrylate copolymer for the conservation of stone building heritages in Putuo Zongcheng Temple, China
- Engineering and Processing
- Study on the influence of in-mold sequential injection molding process parameters on mechanical properties of self-reinforced single composites
- Numerical investigation of the strength of Al/GFRP adhesive bonding under tensile loading
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Biopolymer-based nanocomposites for application in biomedicine: a review
- Preparation and Assembly
- CsxWO3-doped PEG/sweet potato form-stable composites for light-thermal conversion and energy storage
- Preparation, characterization, and application of fluorinated acrylate copolymer for the conservation of stone building heritages in Putuo Zongcheng Temple, China
- Engineering and Processing
- Study on the influence of in-mold sequential injection molding process parameters on mechanical properties of self-reinforced single composites
- Numerical investigation of the strength of Al/GFRP adhesive bonding under tensile loading