Startseite Study on the photodegradation behaviors of liquid crystal display (LCD) used optical cellulose triacetate films
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study on the photodegradation behaviors of liquid crystal display (LCD) used optical cellulose triacetate films

  • Xiushan Fan EMAIL logo und Jin Wu
Veröffentlicht/Copyright: 22. April 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, ramie fiber was employed to prepare cellulose triacetate (CTA) films. Subsequently, the photodegradation behaviors without photosensitizers of CTA films were carried out in photodegradation chambers at 40 °C. Additionally, the photodegradation procedure of films was assessed by the attenuated total reflection infrared (ATR-IR), 1H nuclear magnetic resonance (1H NMR), scanning electron microscope (SEM), thermal properties, degree of substitution (DS), and tensile strength. The research consequences indicated that the mechanical strength of the CTA films was decreased significantly after ultraviolet (UV) irradiation for 300 h. However, the DS of the films is almost invariable when they are exposed to UV irradiation. Meanwhile, the suggested mechanism for photodegradation of CTA was also exhibited in this paper. This study provides a mild and potential pre-treatment approach for the biodegradation of LCD used waste CTA films.


Corresponding author: Xiushan Fan, Institute of Sports Biology, Shaanxi Normal University, Xi’an, 710119, China, E-mail:

Funding source: Projection of Training of Young Scholars of Shaanxi Normal University

Award Identifier / Grant number: 2022BA004

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Xiushan Fan: conceptualization, data curation, formal analysis, funding acquisition, methodology, writing-review & editing. Jin Wu: data curation, formal analysis, methodology.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was supported by the Projection of Training of Young Scholars of Shaanxi Normal University (2022BA004).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Yu, L.; Moriguchi, Y.; Nakatani, J.; Zhang, Q.; Li, F.; He, W.; Li, G. Environmental Impact Assessment on the Recycling of Waste LCD Panels. ACS Sustain. Chem. Eng. 2019, 7, 6360–6368; https://doi.org/10.1021/acssuschemeng.9b00119.Suche in Google Scholar

2. Liang, X.; Xie, R.; Zhu, C.; Chen, H.; Shen, M.; Li, Q.; Du, B.; Luo, D.; Zeng, L. Comprehensive Identification of Liquid Crystal Monomers Biphenyls, Cyanobiphenyls, Fluorinated Biphenyls, and Their Analogues in Waste LCD Panels and the First Estimate of Their Global Release into the Environment. Environ. Sci. Technol. 2021, 55, 12424–12436; https://doi.org/10.1021/acs.est.1c03901.Suche in Google Scholar PubMed

3. Zhang, K.; Li, B.; Wu, Y.; Wang, W.; Li, R.; Zhang, Y.; Zuo, T. Recycling of Indium from Waste LCD: A Promising Non-Crushing Leaching with the Aid of Ultrasonic Wave. Waste Manage. 2017, 64, 236–243; https://doi.org/10.1016/j.wasman.2017.03.031.Suche in Google Scholar PubMed

4. Zhuang, X.; He, W.; Li, G.; Huang, J.; Lu, S.; Hou, L. Hydrothermal Decomposition of Liquid Crystal in Subcritical Water. J. Hazard. Mater. 2014, 271, 236–244; https://doi.org/10.1016/j.jhazmat.2014.02.010.Suche in Google Scholar PubMed

5. Wang, R.; Chen, Y.; Xu, Z. Recycling Acetic Acid from Polarizing Film of Waste Liquid Crystal Display Panels by Sub/Supercritical Water Treatments. Environ. Sci. Technol. 2015, 49, 5999–6008; https://doi.org/10.1021/acs.est.5b00104.Suche in Google Scholar PubMed

6. Yoo, D.-Y.; Lee, Y.; You, I.; Banthia, N.; Zi, G. Utilization of Liquid Crystal Display (LCD) Glass Waste in Concrete: A Review. Cem. Concr. Compos. 2022, 130, 104542; https://doi.org/10.1016/j.cemconcomp.2022.104542.Suche in Google Scholar

7. Chen, Y.; Zhang, L.; Xu, Z. Vacuum Pyrolysis Characteristics and Kinetic Analysis of Liquid Crystal from Scrap Liquid Crystal Display Panels. J. Hazard. Mater. 2017, 327, 55–63; https://doi.org/10.1016/j.jhazmat.2016.12.026.Suche in Google Scholar PubMed

8. Zhang, L.; Xu, Z. C, H, Cl, and in Element Cycle in Wastes: Vacuum Pyrolysis of PVC Plastic to Recover Indium in LCD Panels and Prepare Carbon Coating. ACS Sustain. Chem. Eng. 2017, 5, 8918–8929; https://doi.org/10.1021/acssuschemeng.7b01737.Suche in Google Scholar

9. Illés, I. B.; Nagy, S.; Kékesi, T. The Recycling of Pure Metallic Indium from Waste LCD Screens by a Combined Hydro-Electrometallurgical Method. Hydrometallurgy 2022, 213, 105945; https://doi.org/10.1016/j.hydromet.2022.105945.Suche in Google Scholar

10. Lee, C. T. Production of Alumino-Borosilicate Foamed Glass Body from Waste LCD Glass. J. Ind. Eng. Chem. 2013, 19, 1916–1925; https://doi.org/10.1016/j.jiec.2013.02.038.Suche in Google Scholar

11. Kang, W.; Kim, J. C.; Noh, J. H.; Kim, D. W. Waste Liquid-Crystal Display Glass-Directed Fabrication of Silicon Particles for Lithium-Ion Battery Anodes. ACS Sustain. Chem. Eng. 2019, 7, 15329–15338; https://doi.org/10.1021/acssuschemeng.9b02654.Suche in Google Scholar

12. Zhang, K.; Wu, Y.; Wang, W.; Li, B.; Zhang, Y.; Zuo, T. Recycling Indium from Waste LCDs: A Review. Resour. Conserv. Recycl. 2015, 104, 276–290; https://doi.org/10.1016/j.resconrec.2015.07.015.Suche in Google Scholar

13. Cheng, M.; Qin, Z.; Hu, S.; Yu, H.; Zhu, M. Use of Electrospinning to Directly Fabricate Three-Dimensional Nanofiber Stacks of Cellulose Acetate under High Relative Humidity Condition. Cellulose 2017, 24, 219–229; https://doi.org/10.1007/s10570-016-1099-3.Suche in Google Scholar

14. Fan, X.; Liu, Z.-W.; Lu, J.; Liu, Z.-T. Cellulose Triacetate Optical Film Preparation from Ramie Fiber. Ind. Eng. Chem. Res. 2009, 48, 6212–6215; https://doi.org/10.1021/ie801703x.Suche in Google Scholar

15. Yi, S.; Wu, Y.; Zhang, Y.; Zou, Y.; Dai, F.; Si, Y. Antibacterial Activity of Photoactive Silk Fibroin/Cellulose Acetate Blend Nanofibrous Membranes against Escherichia Coli. ACS Sustain. Chem. Eng. 2020, 8, 16775–16780; https://doi.org/10.1021/acssuschemeng.0c04276.Suche in Google Scholar

16. Ahmad, I. R.; Cane, D.; Townsend, J. H.; Triana, C.; Mazzei, L.; Curran, K. Are We Overestimating the Permanence of Cellulose Triacetate Cinematographic Films? A Mathematical Model for the Vinegar Syndrome. Polym. Degrad. Stab. 2020, 172, 1–10; https://doi.org/10.1016/j.polymdegradstab.2019.109050.Suche in Google Scholar

17. Amato, A.; Rocchetti, L.; Beolchini, F. Environmental Impact Assessment of Different End-of-Life LCD Management Strategies. Waste Manage. 2017, 59, 432–441; https://doi.org/10.1016/j.wasman.2016.09.024.Suche in Google Scholar PubMed

18. Yadav, N.; Adolfsson, K. H.; Hakkarainen, M. Carbon Dot-Triggered Photocatalytic Degradation of Cellulose Acetate. Biomacromolecules 2021, 22, 2211–2223; https://doi.org/10.1021/acs.biomac.1c00273.Suche in Google Scholar PubMed PubMed Central

19. Rambaldi, D. C.; Suryawanshi, C.; Eng, C.; Preusser, F. D. Effect of Thermal and Photochemical Degradation Strategies on the Deterioration of Cellulose Diacetate. Polym. Degrad. Stab. 2014, 107, 237–245; https://doi.org/10.1016/j.polymdegradstab.2013.12.004.Suche in Google Scholar

20. Hosono, K.; Kanazawa, A.; Mori, H.; Endo, T. Photodegradation of Cellulose Acetate Film in the Presence of Benzophenone as a Photosensitizer. J. Appl. Polym. Sci. 2007, 105, 3235–3239; https://doi.org/10.1002/app.26386.Suche in Google Scholar

21. Jang, J.; Lee, H.-S.; Lyoo, W.-S. Effect of UV Irradiation on Cellulase Degradation of Cellulose Acetate Containing TiO2. Fibers Polym. 2007, 8, 19–24; https://doi.org/10.1007/bf02908155.Suche in Google Scholar

22. Yadav, N.; Hakkarainen, M. Degradable or Not? Cellulose Acetate as a Model for Complicated Interplay between Structure, Environment and Degradation. Chemosphere 2021, 265, 128731; https://doi.org/10.1016/j.chemosphere.2020.128731.Suche in Google Scholar PubMed

23. Leppänen, I.; Vikman, M.; Harlin, A.; Orelma, H. Enzymatic Degradation and Pilot-Scale Composting of Cellulose-Based Films with Different Chemical Structures. J. Polym. Environ. 2020, 28, 458–470; https://doi.org/10.1007/s10924-019-01621-w.Suche in Google Scholar

24. Ishigaki, T.; Sugano, W.; Ike, M.; Taniguchi, H.; Goto, T.; Fujita, M. Effect of UV Irradiation on Enzymatic Degradation of Cellulose Acetate. Polym. Degrad. Stab. 2002, 78, 505–510; https://doi.org/10.1016/s0141-3910(02)00197-0.Suche in Google Scholar

25. Zada, A.; Khan, M.; Khan, M. A.; Khan, Q.; Habibi-Yangjeh, A.; Dang, A.; Maqbool, M. Review on the Hazardous Applications and Photodegradation Mechanisms of Chlorophenols over Different Photocatalysts. Environ. Res. 2021, 195, 110742; https://doi.org/10.1016/j.envres.2021.110742.Suche in Google Scholar PubMed

26. Krueger, M. C.; Harms, H.; Schlosser, D. Prospects for Microbiological Solutions to Environmental Pollution with Plastics. Appl. Microbiol. Biotechnol. 2015, 99, 8857–8874; https://doi.org/10.1007/s00253-015-6879-4.Suche in Google Scholar PubMed

27. Al-kalali, N. A.; Abdelghany, A. M.; Bin, A. S.; Abdelaziz, M.; Oraby, A. H. Structural, Optical, and Dielectric Characteristics of Chitosan/Hydroxypropyl Cellulose-Modified Copper Vanadate Nanoparticles. Polym. Eng. Sci. 2023, 63, 4262–4273; https://doi.org/10.1002/pen.26522.Suche in Google Scholar

28. El-Bana, A. A.; Abdelghany, A. M.; Meikhail, M. S. Molecular Structure and Optical Attributes of (Na-CMC/SA) Natural Polymer Blend. Bull. Chem. Soc. Ethiop. 2022, 36, 707–716; https://doi.org/10.4314/bcse.v36i3.19.Suche in Google Scholar

29. Wang, T.; Zhang, J.; Song, Y.; Liu, Z.; Ding, H.; Zhao, C.; Wang, P. Role of Micro-Size Zero Valence Iron as Particle Electrodes in a Three Dimensional Heterogeneous Electro-Ozonation Process for Nitrobenzene Degradation. Chemosphere 2021, 276, 130264; https://doi.org/10.1016/j.chemosphere.2021.130264.Suche in Google Scholar PubMed

Received: 2023-08-01
Accepted: 2024-03-18
Published Online: 2024-04-22
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0184/html
Button zum nach oben scrollen