Startseite The degradation behaviors of optical cellulose triacetate films in alkali/acid solutions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The degradation behaviors of optical cellulose triacetate films in alkali/acid solutions

  • Jian’an Wang und Xiushan Fan EMAIL logo
Veröffentlicht/Copyright: 14. Juni 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this research, the degradation behaviors of ramie-based cellulose triacetate (CTA) films in alkali or acid solutions at room temperature were assessed. Moreover, the attenuated total reflection infrared (ATR-IR), physicochemical properties testing, scanning electron microscope (SEM), and thermogravimetric analysis/differential scanning calorimeter (TG/DSC) were employed to evaluate the detailed degradation process of the CTA films, which were treated by alkali or acidic aqueous solutions. The research results demonstrated that the dominant reaction of CTA films in NaOH solution with various concentrations is deacetylation. Intriguingly, the degradation behaviors of CTA films in HCl depend on the concentration of acid. The CTA films were almost immune to HCl with the concentration less than 1 mol L−1. However, films were degraded directly when the concentration of acid was higher than 1 mol L−1. This study provides a theoretical basis and further understanding for the treatment of dumped CTA films at room temperature.


Corresponding author: Xiushan Fan, Institute of Sports Biology, Shaanxi Normal University, Xi’an, 710119, China; and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119, China, E-mail:

Funding source: Projection of Training of Young Scholars

Award Identifier / Grant number: 2022BA004

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors gratefully acknowledge the financial support from the Projection of Training of Young Scholars (2022BA004).

  3. Conflict of interest statement: The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. He, Y., Ma, E., Xu, Z. Recycling indium from waste liquid crystal display panel by vacuum carbon-reduction. J. Hazard. Mater. 2014, 268, 185–190; https://doi.org/10.1016/j.jhazmat.2014.01.011.Suche in Google Scholar PubMed

2. Yu, L., Moriguchi, Y., Nakatani, J., Zhang, Q., Li, F., He, W., Li, G. Environmental impact assessment on the recycling of waste LCD panels. ACS Sustain. Chem. Eng. 2019, 7, 6360–6368; https://doi.org/10.1021/acssuschemeng.9b00119.Suche in Google Scholar

3. Liu, Z., Xu, Z., Huang, H., Li, B. A study of waste liquid crystal display generation in mainland China. Waste Manage. Res. 2016, 34, 58–66; https://doi.org/10.1177/0734242x15611736.Suche in Google Scholar

4. Liang, X., Xie, R., Zhu, C., Chen, H., Shen, M., Li, Q., Du, B., Luo, D., Zeng, L. Comprehensive identification of liquid crystal monomers biphenyls, cyanobiphenyls, fluorinated biphenyls, and their analogues in waste LCD panels and the first estimate of their global release into the environment. Environ. Sci. Technol. 2021, 55, 12424–12436; https://doi.org/10.1021/acs.est.1c03901.Suche in Google Scholar PubMed

5. Kang, W., Kim, J. C., Noh, J. H., Kim, D. W. Waste liquid-crystal display glass-directed fabrication of silicon particles for lithium-ion battery anodes. ACS Sustain. Chem. Eng. 2019, 7, 15329–15338; https://doi.org/10.1021/acssuschemeng.9b02654.Suche in Google Scholar

6. Zhang, K., Wu, Y., Wang, W., Li, B., Zhang, Y., Zuo, T. Recycling indium from waste LCDs: a review. Resour. Conserv. Recy. 2015, 104, 276–290; https://doi.org/10.1016/j.resconrec.2015.07.015.Suche in Google Scholar

7. Fan, X., Liu, Z., Lu, J., Liu, Z. T. Cellulose triacetate optical film preparation from ramie fiber. Ind. Eng. Chem. Res. 2009, 48, 6212–6215; https://doi.org/10.1021/ie801703x.Suche in Google Scholar

8. Songsurang, K., Miyagawa, A., Manaf, M. E. A., Phulkerd, P., Nobukawa, S., Yamaguchi, M. Optical anisotropy in solution-cast film of cellulose triacetate. Cellulose 2013, 20, 83–96; https://doi.org/10.1007/s10570-012-9807-0.Suche in Google Scholar

9. Yu, W., Yang, Q., Zou, Y., Wang, Y. Research status of cellulose triacetate in liquid crystal display. China Plast. Ind. 2017, 45, 13–16; https://doi.org/10.3969/j.issn.1005-5770.2017.04.004.Suche in Google Scholar

10. Li, J., Gao, S., Duan, H., Liu, L. Recovery of valuable materials from waste liquid crystal display pane. Waste Manag. 2009, 29, 2033–2039; https://doi.org/10.1016/j.wasman.2008.12.013.Suche in Google Scholar PubMed

11. Wang, R., Xu, Z. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels. J. Hazard. Mater. 2016, 302, 45–56; https://doi.org/10.1016/j.jhazmat.2015.09.038.Suche in Google Scholar PubMed

12. Zhang, L., Wu, B., Chen, Y., Xu, Z. Energy and valuable resource recovery from waste liquid crystal display panels by an environmental-friendly technological process: pyrolysis of liquid crystals and preparation of indium product. J. Clean. Prod. 2017, 162, 141–152; https://doi.org/10.1016/j.jclepro.2017.06.031.Suche in Google Scholar

13. Chen, Y., Zhang, L., Xu, Z. Vacuum pyrolysis characteristics and kinetic analysis of liquid crystal from scrap liquid crystal display panels. J. Hazard. Mater. 2017, 327, 55–63; https://doi.org/10.1016/j.jhazmat.2016.12.026.Suche in Google Scholar PubMed

14. Zhang, K., Li, B., Wu, Y., Wang, W., Li, R., Zhang, Y., Zuo, T. Recycling of indium from waste LCD: a promising non-crushing leaching with the aid of ultrasonic wave. Waste Manag. 2017, 64, 236–243; https://doi.org/10.1016/j.wasman.2017.03.031.Suche in Google Scholar PubMed

15. Guan, J., Wang, S., Ren, H., Guo, Y., Yuan, H., Yan, X., Guo, J., Gu, W., Su, R., Liang, B., Gao, G., Zhou, Y., Xua, J., Guo, Z. Indium recovery from waste liquid crystal displays by polyvinyl chloride waste. RSC Adv. 2015, 5, 102836–102843; https://doi.org/10.1039/c5ra21871c.Suche in Google Scholar

16. Buchanan, C. M., Gardner, R. M., Komarek, R. J. Aerobic biodegradation of cellulose acetate. J. Appl. Polym. Sci. 1993, 47, 1709–1719; https://doi.org/10.1002/app.1993.070471001.Suche in Google Scholar

17. Rambaldi, D. C., Suryawanshi, C., Eng, C., Preusser, F. D. Effect of thermal and photochemical degradation strategies on the deterioration of cellulose diacetate. Polym. Degrad. Stab. 2014, 107, 237–245; https://doi.org/10.1016/j.polymdegradstab.2013.12.004.Suche in Google Scholar

18. Yadav, N., Hakkarainen, M. Degradable or not? Cellulose acetate as a model for complicated interplay between structure, environment and degradation. Chemosphere 2021, 265, 128731; https://doi.org/10.1016/j.chemosphere.2020.128731.Suche in Google Scholar PubMed

19. Leppänen, I., Vikman, M., Harlin, A., Orelma, H. Enzymatic degradation and pilot-scale composting of cellulose-based films with different chemical structures. J. Polym. Environ. 2020, 28, 458–470; https://doi.org/10.1007/s10924-019-01621-w.Suche in Google Scholar

20. Zhang, W., Wang, D., Wang, S. Degradation properties of alkali-treated diacetate fiber. J. Cellulose Sci. Technol. 2008, 16, 45–49; https://doi.org/10.16561/j.cnki.xws.2008.01.005.Suche in Google Scholar

21. Joly, F.-X., Coulis, M. Comparison of cellulose vs. plastic cigarette filter decomposition under distinct disposal environments. Waste Manag. 2018, 72, 349–353; https://doi.org/10.1016/j.wasman.2017.11.023.Suche in Google Scholar PubMed

22. Quintana, R., Persenaire, O., Lemmouchi, Y., Sampson, J., Martin, S., Bonnaud, L., Dubois, P. Enhancement of cellulose acetate degradation under accelerated weathering by plasticization with eco-friendly plasticizers. Polym. Degrad. Stabili. 2013, 98, 1556–1562; https://doi.org/10.1016/j.polymdegradstab.2013.06.032.Suche in Google Scholar

23. Haske-Cornelius, O., Pellis, A., Tegl, G., Wurz, S., Saake, B., Ludwig, R., Sebastian, A., Nyanhongo, G. S., Guebitz, G. M. Enzymatic systems for cellulose acetate degradation. Catalysts 2017, 7, 287; https://doi.org/10.3390/catal7100287.Suche in Google Scholar

24. Rinaldi, R., Schuth, F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2009, 2, 1096–1107; https://doi.org/10.1002/cssc.200900188.Suche in Google Scholar PubMed

25. Vázquez, G., Alvarez, E., Varela, R., Cancela, A., Navaza, J. M. Density and viscosity of aqueous solutions of sodium dithionite, sodium hydroxide, sodium dithionite + sucrose, and sodium dithionite + sodium hydroxide + sucrose from 25 °C to 40 °C. J. Chem. Eng. Data 1996, 41, 244–248; https://doi.org/10.1021/je950243k.Suche in Google Scholar

Received: 2023-01-16
Accepted: 2023-05-27
Published Online: 2023-06-14
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0017/html
Button zum nach oben scrollen