Home Exploration of dielectric spectra of variously synthesized epoxy/ZnO nanocomposites
Article
Licensed
Unlicensed Requires Authentication

Exploration of dielectric spectra of variously synthesized epoxy/ZnO nanocomposites

  • Mihir N. Velani ORCID logo and Ritesh R. Patel EMAIL logo
Published/Copyright: July 21, 2023
Become an author with De Gruyter Brill

Abstract

Polymeric epoxy-based nanocomposites have rapidly developed in high energy density and power industry components. The composite insulation undergoes harsh extreme temperature conditions and a high electric field with varying frequencies. This paper dissects the components of complex permittivity in epoxy/ZnO nano and micro composites that were synthesized using different methods, utilizing dielectric spectroscopy as per ASTM D150. The performance of the composites was studied by analyzing the spectra over a frequency range spanning from 1 mHz to 1 kHz. We presume interfacial polarization arises in the composites due to particle clustering. Furthermore, we evaluated the effect of varying filler concentration at 25, 50, 70, and 90 °C. The real permittivity positions the α-steps at 70 and 90 °C. The real and imaginary permittivities remain largely unpretentious by the synthesis method over the entire frequency range.


Corresponding author: Ritesh R. Patel, Department of Electrical Engineering, G.H. Patel College of Engineering and Technology, Vallabh Vidyanagar 388120, Gujarat, India, E-mail:

Funding source: Government of Gujarat’s Students Startup and Innovation Policy (SSIP)

Award Identifier / Grant number: SSIP/SOE/092020/003

Acknowledgments

The authors are grateful to Saurashtra University’s Department of Pharmaceutical Sciences for enabling us to work with the ultrasonic probe sonicator. We extend our thanks the High Voltage Laboratory, IITK, and Mr. Amrendra Kumar, Ph.D. scholar, Department of Electrical Engineering, IITK, for helping us to carry out the Broadband Dielectric Spectroscopy facility.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors are grateful to the Government of Gujarat’s Students Startup and Innovation Policy (SSIP), which granted part funding for this project (SSIP/SOE/092020/003).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Takahiro, I., Yoshiyuki, I., Masayoshi, N., Tetsuo, Y., Kazutoshi, T. G., Takashi, K. Potential applications in electric power and electronics sector. In Advanced Nanodielectrics: Fundamentals and Applications; Toshikatsu, T., Takahiro, I., Eds. Pan Stanford: Singapore, 2017; pp. 19–86.10.1201/9781315230740-2Search in Google Scholar

2. Frechette, M., Preda, I., Castellon, J. Polymer composites with a large nanofiller content: a case study involving epoxy. IEEE Trans. Dielectr. Electr. Insulat. 2013, 21, 434–443; https://doi.org/10.1109/tdei.2013.004164.Search in Google Scholar

3. Chen, Y., Wu, J. Investigation on relationship between breakdown strength enhancement of composites and dielectric characteristics of nanoparticle. IEEE Trans. Dielectr. Electr. Insulat. 2016, 23, 927–934; https://doi.org/10.1109/tdei.2015.005378.Search in Google Scholar

4. Daily, C. S., Sun, W., Kessler, M. R., Xiaoli, T., Nicola, B. Modeling the interphase of a polymer-based nanodielectric. IEEE Trans. Dielectr. Electr. Insulat. 2014, 21, 488–496; https://doi.org/10.1109/tdei.2013.004181.Search in Google Scholar

5. Iyer, G., Gorur, R. S., Richert, R., Schmidt, L. E. Dielectric properties of epoxy-based nanocomposites for high voltage insulation. IEEE Trans. Dielectr. Electr. Insulat 2011, 18, 659–666; https://doi.org/10.1109/tdei.2011.5931050.Search in Google Scholar

6. Heid, T., Frechette, M., David, E. Nanostructured epoxy/POSS composites: enhanced materials for high voltage insulation applications. IEEE Trans. Dielectr. Electr. Insulat. 2015, 22, 1594–1604; https://doi.org/10.1109/tdei.2015.7116355.Search in Google Scholar

7. Wang, Q., Chen, G. Effect of pre-treatment of nanofillers on the dielectric properties of epoxy nano-composites. IEEE Trans. Dielectr. Electr. Insulat. 2014, 21, 1809–1816; https://doi.org/10.1109/tdei.2014.004278.Search in Google Scholar

8. Patel, R., Gupta, N. Effect of humidity on the complex permittivity of epoxy-based nanodielectrics with metal-oxide fillers. Int. Trans. Electr. Energy Syst. 2012, 23, 846–852; https://doi.org/10.1002/etep.1663.Search in Google Scholar

9. Huang, X., Xie, L., Yang, K., Wu, C., Jiang, P., Li, S., Wu, S., Tatsumi, K., Tanaka, T. Role of interface in highly filled epoxy/BaTiO3 nanocomposites. Part I—correlation between nanoparticle surface chemistry and nanocomposite dielectric property. IEEE Trans. Dielectr. Electr. Insulat. 2014, 21, 467–479; https://doi.org/10.1109/tdei.2013.004165.Search in Google Scholar

10. Muhammad, A., Muhammad, A., Abraiz, K. Fabrication, mechanical, thermal, and electrical characterization of epoxy/silica composites for high-voltage insulation. Sci. Eng. Comp. Mat. 2017, 25, 753–759; https://doi.org/10.1515/secm-2015-0445.Search in Google Scholar

11. Takahiro, I. Nanofiller dispersion for tailoring of nanocomposite dielectrics. In Tailoring of Nanocomposite Dielectrics: From Fundamentals to Devices and Applications; Toshikatsu, T., Alun, S., Eds. Pan Stanford: Singapore, 2017; pp. 41–85.10.1201/9781315201535-4Search in Google Scholar

12. Abraiz, K., Muhammad, A., Muhammad, I. Long term accelerated aging investigation of an epoxy/silica nanocomposite for high voltage insulation. J. Polym. Eng. 2017, 38, 263–269; https://doi.org/10.1515/polyeng-2016-0233.Search in Google Scholar

13. Mihir, V., Ritesh, P. Effect of size and shape of nanofillers on electrostatic and thermal behavior of epoxy-based composites. Polym. Polym. Compos. 2021, 29, S978–S988; https://doi.org/10.1177/09673911211032487.Search in Google Scholar

14. Mihir, V., Ritesh, P. Influence of filler configurations on properties of epoxy-based nanocomposites. In Proceedings of 21st National Power Systems Conference (NPSC), Gandhinagar, India, December 17–19, 2021, 1–6.10.1109/NPSC49263.2020.9331845Search in Google Scholar

15. Romana, Z., Nandini, G. Dielectric spectroscopy of epoxy-based barium titanate nanocomposites: effect of temperature and humidity. IET Nanodielectrics 2020, 3, 20–27; https://doi.org/10.1049/iet-nde.2019.0036.Search in Google Scholar

16. Deng, W., Li, T., Li, H., Dang, A., Liu, X., Zhai, J., Wu, H. Morphology modulated defects engineering from MnO2 supported on carbon foam toward excellent electromagnetic wave absorption. Carbon 2023, 206, 192–200; https://doi.org/10.1016/j.carbon.2023.02.039.Search in Google Scholar

17. Liang, H., Chen, G., Liu, D., Li, Z., Hui, S., Yun, J., Zhang, L., Wu, H. Exploring the ni 3d orbital unpaired electrons induced polarization loss based on ni single-atoms model absorber. Adv. Funct. Mater. 2023, 33, 1–9; https://doi.org/10.1002/adfm.202212604.Search in Google Scholar

18. Zhao, Z., Zhang, L., Wu, H. Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers. Adv. Mat. 2022, 26, 1–10; https://doi.org/10.1002/adma.202205376.Search in Google Scholar PubMed

19. Schultz, J. W. Dielectric spectroscopy in analysis of polymers. In Encyclopedia of Analytical Chemistry; Wiley–Blackwell: New Jersey, 2004.Search in Google Scholar

20. American Society for Testing and Materials (ASTM) International. Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation Pennsylvania; ASTM D150: United States, 2022.Search in Google Scholar

21. Kavitha, D., Sindhu, T. K., Nambiar, T. N. P. Impact of permittivity and concentration of filler nanoparticles on dielectric properties of polymer nanocomposites. IET Sci. Meas. Technol. 2017, 11, 179–185; https://doi.org/10.1049/iet-smt.2016.0226.Search in Google Scholar

22. Santanu, S., Thomas, M. J. Dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Insul. 2008, 15, 12–23; https://doi.org/10.1109/t-dei.2008.4446732.Search in Google Scholar

23. Siny, P., Sindhu, T. K. Development of epoxy-aluminum nanocomposite dielectric material with low filler concentration for embedded capacitor applications. IEEE Trans. Dielectr. Insul. 2013, 21, 460–466.10.1109/TDEI.2013.004175Search in Google Scholar

24. Wang, Z., Zhou, W., Dong, L., Sui, X., zuo, J., Cai, H., Liu, X., Chen, Q., Cai, J. Dielectric relaxation dynamics of Al/epoxy micro-composites. J. Alloys Compd. 2016, 689, 342–349; https://doi.org/10.1016/j.jallcom.2016.07.332.Search in Google Scholar

25. Hardoň, S., Kúdelčík, J., Hornak, J., Michal, O., Totzauer, P., Trnka, P. The influence of ZnO nanoparticles in the epoxy resin on the complex permittivity and dissipation factor. In Proceedings of the 13th International Scientific Conference on Sustainable, Modern and Safe Transport (TRANSCOM 2019), Novy Smokovec, Slovak Republic, May 29–31, 2019, 30–33.10.1016/j.trpro.2019.07.006Search in Google Scholar

26. Saji, V. S. The impact of nanotechnology on reducing corrosion cost. In Corrosion Protection and Control Using Nanomaterials; Viswanathan, S. S., Ronald, C., Eds. Woodhead Publishing Limited: Sawston, 2012; pp. 3–15.10.1533/9780857095800.1.3Search in Google Scholar

27. Dąda, A., Błaut, P., Kuniewski, M., Zydroń, P. Analysis of selected dielectric properties of epoxy-alumina nanocomposites cured at stepwise increasing temperatures. Energies 2023, 16, 1–20; https://doi.org/10.3390/en16052091.Search in Google Scholar

28. Lian, Z., Chen, D., Li, S. Investigation on the corelation between dispersion characteristics at terahertz range and dielectric permittivity at low frequency of epoxy resin nanocomposites. Polymers 2022, 14, 1–20.10.3390/polym14040827Search in Google Scholar PubMed PubMed Central

29. Soulintzis, A., Kontos, G., Karahaliou, P., Psarras, G. C., Georga, S. N., Krontiras, C. A. Dielectric relaxation processes in epoxy resin—ZnO composites. J. Polym. Sci. B Polym. Phys. 2009, 47, 445–454; https://doi.org/10.1002/polb.21649.Search in Google Scholar

30. Drakopoulos, S. X., Patsidis, A. C., Psarras, G. C. Epoxy-based/BaTiO3 nanodielectrics: relaxation dynamics, charge transport and energy storage. Mater. Res. Bull. 2022, 145, 1–20; https://doi.org/10.1016/j.materresbull.2021.111537.Search in Google Scholar

31. Kaufman, J. L., Tan, S. H., Lau, K., Shah, A., Gambee, R. G., Gage, C., MacIntosh, L., Dato, A., Saeta, P. N., Haskell, R. C., Monson, T. C. Permittivity effects of particle agglomeration in ferroelectric ceramic-epoxy composites using finite element modeling. AIP Adv. 2018, 8, 1–16; https://doi.org/10.1063/1.5053442.Search in Google Scholar

32. Varakantham, S. R., Kliem, H. Dielectric relaxational phenomena in interacting composite structures. IEEE Trans. Dielectr. Insul. 2021, 28, 845–852; https://doi.org/10.1109/tdei.2020.009405.Search in Google Scholar

Received: 2023-04-05
Accepted: 2023-06-16
Published Online: 2023-07-21
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0079/html
Scroll to top button