Startseite Modification of natural pigskin collagen via cryogrinding: a focused study on its physiochemical properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modification of natural pigskin collagen via cryogrinding: a focused study on its physiochemical properties

  • Yuling Xu , Jialin Liu , Lei Dai , Haibo Wang EMAIL logo , Lang He EMAIL logo , Chengzhi Xu , Benmei Wei , Juntao Zhang und Huizhi Kou
Veröffentlicht/Copyright: 8. März 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Natural pigskin was subjected to cryogrinding before extraction, and effects of the approach on extraction rate, structure, and properties of collagen were prospected systematically. It was found that the extraction rate multiplied gradually from 22% to 40% with an extended grinding duration from 0 to 20 min. Compared with natural collagen, the ground one soared by about 80% concerning the net yield. Electrophoresis revealed the stereo structures of the extracted collagen were not destroyed when ground, while a small amount of it degraded accordingly, whose conclusion was further corroborated by circular dichroism (CD) and infrared spectrometry. Results from contact angle (CA) test clarified that the hydrophilicity of collagen enhanced with prolonged grinding. Moreover, analysis of fibrillogenesis behavior verified that, after grinding, the assembly rate for collagen in the turbidity assay dented with a lengthened equilibrium time; finer fibril network with larger pore size and weakened elasticity was later observed. Methyl thiazolyl tetrazolium (MTT) analysis manifested that ground collagen was more conducive to cell proliferation. This polymer processing approach not only provides us with a facile approach to manipulate capacities of collagen but also sheds light on other potential substances beneath the same principle.


Corresponding authors: Haibo Wang and Lang He, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430000, P.R. China, E-mail: ,
Yuling Xu, Haibo Wang and Lang He contributed equally to this work.

Funding source: Application Foundation Frontier Project of Wuhan Science and Technology Bureau

Award Identifier / Grant number: 2019020701011478

Award Identifier / Grant number: 21676208

Award Identifier / Grant number: 21706201

Award Identifier / Grant number: 22178277

  1. Research ethics: The animal trial was conducted according to the Animal Scientific Procedures Act 1986 (Home Office Code of Practice. HMSO: London January 1997) and EU regulations (Directive 2010/63/EU). The whole procedure was approved by the Animal Care and Use Committee of Wuhan Polytechnic University (Wuhan, China).

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Research funding: This study was supported by the National Natural Science Foundation of China (nos. 21676208, 21706201, 22178277), and Application Foundation Frontier Project of Wuhan Science and Technology Bureau (no. 2019020701011478).

  4. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

1. Xu, C., Wu, J. H., Ling, L., Wang, S. Y. The cryoprotective effects of antifreeze peptides from pigskin collagen on texture properties and water mobility of frozen dough subjected to freeze–thaw cycles. Eur. Food Res. Technol. 2016, 243, 1–8.10.1007/s00217-016-2830-xSuche in Google Scholar

2. Hong, S. S., Choi, C. W., Lee, J. E., Jung, Y. W., Lee, J. A., Jeong, W., Choi, Y.-H., Cha, H., Ahn, E.-K., Oh, J. S. Bioassay-guided isolation and identification of anti-obesity phytochemicals from fruits of Amomum tsao-ko. Appl. Biol. Chem. 2021, 64, 1–8; https://doi.org/10.1186/s13765-020-00576-0.Suche in Google Scholar

3. Sun, M., Wei, X., Wang, H., Xu, C., Wei, B., Zhang, J., He, L., Xu, Y., Li, S. Structure restoration of thermally denatured collagen by ultrahigh pressure treatment. Food Bioprocess Technol. 2020, 13, 367–378; https://doi.org/10.1007/s11947-019-02389-6.Suche in Google Scholar

4. Ismail, I., Hwang, Y.-H., Joo, S.-T. Effect of different temperature and time combinations on quality characteristics of sous-vide cooked goat gluteus medius and biceps femoris. Food Bioprocess Technol. 2019, 12, 1000–1009; https://doi.org/10.1007/s11947-019-02272-4.Suche in Google Scholar

5. He, L., Li, S., Xu, C., Wei, B., Zhang, J., Xu, Y., Zhu, B., Cao, Y., Wu, X., Xiong, Z., Huang, R., Yang, J., Wang, H. A new method of gelatin modified collagen and viscoelastic study of gelatin-collagen composite hydrogel. Macromol. Res. 2020, 28, 861–868; https://doi.org/10.1007/s13233-020-8103-3.Suche in Google Scholar

6. Zhang, J., Tu, X., Wang, W., Nan, J., Wei, B., Xu, C., He, L., Xu, Y., Li, S., Wang, H. Insight into the role of grafting density in the self-assembly of acrylic acid-grafted-collagen. Int. J. Biol. Macromol. 2019, 128, 885–892; https://doi.org/10.1016/j.ijbiomac.2019.01.211.Suche in Google Scholar PubMed

7. Fernández-Bertran, J. Mechanochemistry: an overview. Pure Appl. Chem. 1999, 71, 581–586.10.1351/pac199971040581Suche in Google Scholar

8. Townsend, B., Peyronel, F., Callaghan-Patrachar, N., Quinn, B., Pink, D. A. Shear-induced aggregation or disaggregation in edible oils: models, computer simulation, and USAXS measurements. J. Appl. Phys. 2017, 122, 224304–224314; https://doi.org/10.1063/1.5004023.Suche in Google Scholar

9. Abdel-Alim, A. H., Hamielec, A. E. Shear degradation of water: oluble polymers. I. Degradation of polyacrylamide in a high: hear couette viscometer. J. Appl. Polym. Sci. 2010, 17, 3769–3778, https://doi.org/10.1002/app.1973.070171218.Suche in Google Scholar

10. Mahrous, F., Koshani, R., Tavakolian, M., Conley, K., Ven, T. Formation of hairy cellulose nanocrystals by cryogrinding. Cellulose 2021, 28, 8387–8403, https://doi.org/10.1007/s10570-021-04092-2.Suche in Google Scholar

11. Drebushchak, T. N., Ogienko, A. A., Boldyreva, E. V. Hedvall effect’ in cryogrinding of molecular crystals. A case study of a polymorphic transition in chlorpropamide. CrystEngComm 2011, 13, 4405–4410; https://doi.org/10.1039/c1ce05189j.Suche in Google Scholar

12. Huang, Y., Wenyu, Z., Qing, S., Toshimasa, T. o., Zhe, M. J. Determination of d,l-amino acids in collagen from pig and cod skins by UPLC using pre-column fluorescent derivatization. Food Anal. Methods 2018, 11, 1–8, https://doi.org/10.1007/s12161-018-1288-9.Suche in Google Scholar

13. Rawdkuen, S., Thitipramote, N., Benjakul, S. Preparation and functional characterisation of fish skin gelatin and comparison with commercial gelatin. Int. J. Food Sci. Technol. 2013, 48, 1093–1102; https://doi.org/10.1111/ijfs.12067.Suche in Google Scholar

14. Yang, J., Wang, H., He, L., Wei, B., Xu, C., Xu, Y., Zhang, J., Li, S. Reconstituted fibril from heterogenic collagens-a new method to regulate properties of collagen gels. Macromol. Res. 2019, 27, 1124–1135; https://doi.org/10.1007/s13233-019-7160-y.Suche in Google Scholar

15. He, L., Yang, J., Xu, C., Li, S., Wei, B., Zhang, J., Xu, Y., Wang, H. Effect of pre-shearing treatment on the molecular structure, fibrillogenesis behavior and gel properties of collagen. New J. Chem. 2020, 44, 6760–6770; https://doi.org/10.1039/d0nj00054j.Suche in Google Scholar

16. Abdollahi, M., Rezaei, M., Jafarpour, A., Undeland, I. Sequential extraction of gel-forming proteins, collagen and collagen hydrolysate from gutted silver carp (Hypophthalmichthys molitrix), a biorefinery approach. Food Chem. 2018, 242, 568–578; https://doi.org/10.1016/j.foodchem.2017.09.045.Suche in Google Scholar PubMed

17. Terekhov, P. D., Baryshnikova, K. V., Shalin, A. S., Alina, K., Evlyukhin, A. B. Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution. Opt. Lett. 2017, 42, 835–838, https://doi.org/10.1364/ol.42.000835.Suche in Google Scholar

18. Bhagwat, P. K., Dandge, P. B. Isolation, characterization and valorizable applications of fish scale collagen in food and agriculture industries. Biocatal. Agric. Biotechnol. 2016, 7, 234–240, https://doi.org/10.1016/j.bcab.2016.06.010.Suche in Google Scholar

19. Mu, C., Li, D., Lin, W., Ding, Y., Zhang, G. Temperature induced denaturation of collagen in acidic solution. Biopolymers 2007, 86, 282–287; https://doi.org/10.1002/bip.20742.Suche in Google Scholar PubMed

20. Zhai, Z., Wang, H., Wei, B., Yu, P., Xu, C., He, L., Zhang, J., Xu, Y. Effect of ionic liquids on the fibril-formation and gel properties of grass carp (Ctenopharyngodon idellus) skin collagen. Macromol. Res. 2018, 26, 609–615; https://doi.org/10.1007/s13233-018-6081-5.Suche in Google Scholar

21. Salvatore, L., Gallo, N., Aiello, D., Lunetti, P., Barca, A., Blasi, L., Madaghiele, M., Bettini, S., Giancane, G., Hasan, M., Borovkov, V., Natali, M. L., Campa, L., Valli, L., Capobianco, L., Napoli, A., Sannino, A. An insight on type I collagen from horse tendon for the manufacture of implantable devices. Int. J. Biol. Macromol. 2020, 154, 291–306; https://doi.org/10.1016/j.ijbiomac.2020.03.082.Suche in Google Scholar PubMed

22. Doyle, B., Bendit, E. G., Blout, E. R. Infrared spectroscopy of collagen and collagen like peptides. Biopolymers 2010, 14, 937–957; https://doi.org/10.1002/bip.1975.360140505.Suche in Google Scholar PubMed

23. Luo, Y., Shoichet, M. S. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 2004, 3, 249–253; https://doi.org/10.1038/nmat1092.Suche in Google Scholar PubMed

24. Noitup, P., Morrissey, M. T., Garnjanagoonchorn, W. In vitro self-assembly of silver-line grunt type I collagen: effects of collagen concentrations, pH and temperatures on collagen self-assembly. J. Food Biochem. 2006, 30, 547–555; https://doi.org/10.1111/j.1745-4514.2006.00081.x.Suche in Google Scholar

25. Dai, L., Nan, J., Tu, X., He, L., Wei, B., Xu, C., Xu, Y., Li, S., Wang, H., Zhang, J. Improved thermostability and cytocompatibility of bacterial cellulose/collagen composite by collagen fibrillogenesis. Cellulose 2019, 26, 6713–6724; https://doi.org/10.1007/s10570-019-02530-w.Suche in Google Scholar

26. Das, K., Bose, S., Bandyopadhyay, A. Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater. 2007, 3, 573–585; https://doi.org/10.1016/j.actbio.2006.12.003.Suche in Google Scholar PubMed

27. Matsugaki, A., Isobe, Y., Saku, T., Nakano, T. Quantitative regulation of bone-mimetic, oriented collagen/apatite matrix structure depends on the degree of osteoblast alignment on oriented collagen substrates. J. Biomed. Mater. Res. 2015, 103, 489–499; https://doi.org/10.1002/jbm.a.35189.Suche in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/polyeng-2022-0269).


Received: 2022-11-05
Accepted: 2022-12-15
Published Online: 2023-03-08
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2022-0269/html
Button zum nach oben scrollen