Startseite Improved process moldability and part quality of short-glass–fiber-reinforced polypropylene via overflow short-shot water-assisted injection molding
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Improved process moldability and part quality of short-glass–fiber-reinforced polypropylene via overflow short-shot water-assisted injection molding

  • Wei Zhang ORCID logo , Tang-qing Kuang , He-sheng Liu EMAIL logo , Jia-mei Lai , Ji-kai Han , Qing-song Jiang ORCID logo EMAIL logo und Zhi-hui Wan
Veröffentlicht/Copyright: 11. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Water-assisted injection molding (WAIM) is a promising molding process developed based on conventional injection molding (CIM). It has been a research hotspot in recent years and is still receiving extensive attention from many scholars and industries because of its significant potential advantages in practical applications. However, compared with CIM, since the additional water-related parameters are involved, the process moldability of thermoplastics is significantly reduced, especially for fiber-reinforced thermoplastics, which stunts the development of WAIM process. In this work, short-shot WAIM with an overflow cavity (OSSWAIM) was developed to address the problems and broaden the application scope of WAIMs. The results showed that compared with overflow WAIM (OWAIM) and short-shot WAIM (SSWAIM), OSSWAIM could significantly improve the process moldability and part quality of fiber-reinforced thermoplastics, especially for thermoplastic composites with a high fiber weight fraction. Besides, it was also found that water penetration had a slight influence on the fiber orientation near the water inlet, but had a significant influence on the fiber orientation near the end of mold cavity. Finally, three processing parameters affecting the water penetration, i.e., water pressure, melt temperature, and water injection delay time were investigated in terms of their influences on the fiber orientation within OSSWAIM.


Corresponding authors: He-sheng Liu, Jiangxi Key Laboratory of High-Performance Precision Molding, Polymer Processing Research Laboratory, Nanchang University, Nanchang 330031, China; School of Mechatronics and Vehicle Engineering, East China Jiao Tong University, Nanchang 330013, China; and School of Mechanical and Electronic Engineering, Jiangxi Province Key Laboratory of Polymer Micro/Nanomanufacturing and Devices, East China University of Technology, Nanchang 330013, China, E-mail: ; and Qing-song Jiang, School of Mechanical and Electronic Engineering, Jiangxi Province Key Laboratory of Polymer Micro/Nanomanufacturing and Devices, East China University of Technology, Nanchang 330013, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for this work and approved submission.

  2. Research funding: This work is financially supported by the National Natural Science Foundation of China (NSFC, Nos. 21664002, 51563010, 52163006), Natural Science Foundation of Jiangxi Province (No. 20181BAB206014), and Major Basic Research Projects of Jiangxi Province (No. 20203BBE53065), for which the authors are very grateful.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

1. Liu, X. H., Pan, Y. M., Zheng, G. Q., Liu, H., Chen, Q., Dong, M. Y., Liu, C. T., Zhang, X. J., Wang, N., Wojcik, E. K., et al.. Overview of the experimental trends in water-assisted injection molding. Macromol. Mater. Eng. 2018, 303, 1–13. https://doi.org/10.1002/mame.201800035.Suche in Google Scholar

2. Liu, S. J., Chen, Y. S. The manufacturing of thermoplastic composite parts by water-assisted injection-molding technology. Compos. Part A-Appl. Sci. 2004, 35, 171–180.10.1016/j.compositesa.2003.10.006Suche in Google Scholar

3. Liu, X. H., Zheng, G. Q., Dai, K., Jia, Z. H., Li, S. W., Liu, C. T., Chen, J. B., Shen, C. Y., Li, Q. Morphological comparison of isotactic polypropylene molded by water-assisted and conventional injection molding. J. Mater. Sci. 2011, 46, 7830–7838.10.1007/s10853-011-5764-5Suche in Google Scholar

4. Liu, S. J., Shih, C. C. An experimental study of the water-assisted injection molding of PA-6 composites. J. Reinf. Plast. Compos. 2008, 27, 985–999.10.1177/0731684407086627Suche in Google Scholar

5. Liu, S. J., Lin, S. P. Study of ‘fingering’ in water-assisted injection molded composites. Compos. Sci. Technol. 2005, 36, 1507–1517.10.1016/j.compositesa.2005.02.011Suche in Google Scholar

6. Liu, S. J., Lin, M. J., Wu, Y. C. An experimental study of the water-assisted injection molding of glass fiber filled poly-butylene-terephthalate (PBT) composites. Compos. Sci. Technol. 2007, 67, 1415–1424.10.1016/j.compscitech.2006.09.016Suche in Google Scholar

7. Yang, J. G., Zhou, X. H. Numerical simulation on residual wall thickness of tubes with dimensional transitions and curved sections in water-assisted injection molding. J. Appl. Polym. Sci. 2012, 128, 1987–1994.10.1002/app.38394Suche in Google Scholar

8. Sannen, S., De, Munck. M., Van Puyvelde, P., De Keyzer, J. Water penetration behavior in water-assisted injection molding (WAIM): a study of product quality for different process and material parameters. Int. Polym. Proc. 2012, 27, 602–616.10.3139/217.2622Suche in Google Scholar

9. Liu, S. J., Wu, Y. C. A novel high flow rate pin for water-assisted injection molding of plastic parts with a more uniform residual wall thickness distribution. Int. Polym. Proc. 2006, 21, 436–439.10.3139/217.0989Suche in Google Scholar

10. Huang, H. X., Deng, Z. W. Effects and optimization of processing parameters in water-assisted injection molding. J. Appl. Polym. Sci. 2008, 108, 228–235.10.1002/app.27560Suche in Google Scholar

11. Yang, J. G., Zhou, X. H., Niu, Q. Model and simulation of water penetration in water-assisted injection molding. Int. J. Adv. Manuf. Technol. 2013, 67, 367–375.10.1007/s00170-012-4490-8Suche in Google Scholar

12. Yang, J. G., Zhou, X. H., Niu, Q. Residual wall thickness study of variable cross-section tube in water-assisted injection molding. Int. Polym. Proc. 2013, 27, 584–590.10.3139/217.2612Suche in Google Scholar

13. Huang, H. X., Zhou, R. H., Yang, C. Fiber orientation propelled by high-pressure water penetration in water-assisted injection molded fiber-reinforced thermoplastics part. J. Compos. Mater. 2013, 47, 183–190.10.1177/0021998312438083Suche in Google Scholar

14. Yu, Z., Liu, H. S., Kuang, T. Q., Huang, X. Y., Chen, Z. S., Zhang, W., Zhang, K. The study of short-shot water-assisted injection molding of short glass fiber reinforced polypropylene. J. Appl. Polym. Sci. 2020, 137, 1–12.10.1002/app.49555Suche in Google Scholar

15. Zheng, G. Q., Li, Q., Chen, J. B., Shen, C. Y., Yang, W., Yang, M. B. Gas-assisted injection molded polypropylene/glass fiber composite: foaming structure and tensile strength. J. Macromol. Sci. 2009, 48, 170–176.10.1080/03602550802577437Suche in Google Scholar

16. Mortazavian, S., Fatemi, A. Fatigue behavior and modeling of short fiber reinforced polymer composites: a literature review. Int. J. Fatigue 2015, 70, 297–321.10.1016/j.ijfatigue.2014.10.005Suche in Google Scholar

17. Tseng, H. C., Chang, R. Y., Hsu, C. H. Accurate predictions of orientation dependent modulus in short-fiber-reinforced composite with experimental validation. Polym. Compos. 2018, 39, 2847–2859.10.1002/pc.24277Suche in Google Scholar

18. Qu, M. C., Nilsson, F., Qin, Y. J., Yang, G. D., Gao, Q., Xu, W., Liu, X. H., Schubert, D. W. Electrical conductivity of anisotropic PMMA composite filaments with aligned carbon fibers-predicting the influence of measurement direction. RSC Adv. 2020, 10, 4156–4165.10.1039/C9RA08105DSuche in Google Scholar PubMed PubMed Central

19. Kuang, T. Q., Deng, Y., Yu, C. C., Zhang, K. Water penetration during short-shot water-assisted injection molding process. Polym. Mater. Sci. Eng. 2015, 31, 121–126.Suche in Google Scholar

20. Kuang, T. Q., Pan, J. Y., Feng, Q., Xu, B. P., Liu, W. W., Turng, L. S. Residual wall thickness of water-powered projectile-assisted injection molding pipes. Polym. Eng. Sci. 2019, 59, 295–303.10.1002/pen.24904Suche in Google Scholar

21. Wu, Y. C., Liu, S. J. Flow visualisation of water-assisted injection moulding process. Plast. Rubber Compos. 2005, 34, 227–231.10.1179/174328905X64731Suche in Google Scholar

22. Zhang, W., Liu, H. S., Jiang, Q. S., Kuang, T. Q., Lai, J. M., Huang, X. Y. Formation mechanism of high‐pressure water penetration induced fiber orientation in overflow water‐assisted injection molded short glass fiber‐reinforced polypropylene. J. Appl. Polym. Sci. 2021, 138, 1–17.10.1002/app.50960Suche in Google Scholar

23. Yang, C., Huang, H. X., Li, K. Investigation of fiber orientation states in injection-compression molded short-fiber-reinforced thermoplastics. Polym. Compos. 2010, 31, 1899–1908.10.1002/pc.20986Suche in Google Scholar

24. Huang, H. X., Zhou, R. H. Preliminary investigation on morphology in water-assisted injection molded polymer blends. Polym. Test. 2010, 29, 235–244.10.1016/j.polymertesting.2009.11.006Suche in Google Scholar

25. Lin, K. Y., Liu, S. J. Morphology of fluid assisted injection molded polycarbonate/polyethylene blends. Macromol. Mater. Eng. 2010, 295, 342–350.10.1002/mame.200900285Suche in Google Scholar

26. Wang, B., Huang, H. X., Wang, Z. Y. Process-induced phase and crystal morphologies in water-assisted injection molded polypropylene/polymeric β-nucleating agent blend parts. Polym. Eng. Sci. 2015, 55, 1698–1705.10.1002/pen.24008Suche in Google Scholar

27. Liu, X. H., Zheng, G. Q., Jia, Z. H., Li, S. W., Liu, C. G., Zhang, Y., Shao, C. G., Dai, K., Liu, B. C., Zhang, Q. X., et al.. The hierarchical structure of water‐assisted injection molded high density polyethylene: small angle X‐ray scattering study. J. Appl. Polym. Sci. 2012, 125, 2297–2303.10.1002/app.36408Suche in Google Scholar

28. Liu, X. H., Zhang, C. Y., Dai, K., Zheng, G. Q., Liu, C. T., Shen, C. Y. Unexpected molecular weight dependence of shish-kebab in water-assisted injection molded HDPE. Polym. Adv. Technol. 2013, 24, 270–272.10.1002/pat.3071Suche in Google Scholar

29. Liu, S. J., Lin, W. R., Lin, K. Y. Morphological development in water-assisted injection molded polyethylene/polyamide-6 blends. Polym. Adv. Technol. 2011, 22, 2062–2068.10.1002/pat.1721Suche in Google Scholar

Received: 2021-07-31
Accepted: 2021-12-23
Published Online: 2022-02-11
Published in Print: 2022-04-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0217/html
Button zum nach oben scrollen