Startseite Removal of crystal violet from water by poly acrylonitrile-co-sodium methallyl sulfonate (AN69) and poly acrylic acid (PAA) synthetic membranes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Removal of crystal violet from water by poly acrylonitrile-co-sodium methallyl sulfonate (AN69) and poly acrylic acid (PAA) synthetic membranes

  • Ely Cheikh S’Id ORCID logo EMAIL logo , Mohamed Degué , Chlouma Khalifa und Chamekh M’Bareck EMAIL logo
Veröffentlicht/Copyright: 10. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The current investigation is focused on the removal of crystal violet (CV) from water by adsorption process (bach method). To achieve this purpose, specific membranes were prepared from poly acrylonitrile-co-sodium methallyl sulfonate (AN69) and poly acrylic acid (PAA) blends. The adsorption of CV onto AN69/PAA membranes was studied under various conditions: membrane composition, pH, contact time, initial concentration and temperature. To understand the effect of membrane morphology on adsorption process, scanning electronic microscopy (SEM) was employed to determine the features of section and membrane’s surface. From isotherm results, it was found that: the maximum adsorption capacity Q m was 1250 mg g−1, the Langmuir separation factor R L was lying between 0.33 and 0.76, the Freundlich intensity was higher than Unit (n = 1.25) and the adsorption process follows preferentially the Langmuir model (correlation constant R 2 = 0.99). The mechanism of adsorption is perfectly fitted by pseudo second order. The obtained results tend to confirm that the removal of dye molecules is due to the establishment of strong electrostatic interactions between cationic dye molecules and anionic membrane groups. The high adsorption capacity (1250 mg g−1) for the small dye molecules may open wide opportunities to apply these membranes in the removal of various hazardous pollutants commonly present in water.


Corresponding author: Ely Cheikh S’Id and Chamekh M’Bareck, Membranes, Matériaux, Environnement et Milieux Aquatiques (2MEMA), FST University of Nouakchott Al-Aasriya, BP 5026, Nouakchott 5026, Mauritania, E-mail: (E.C. S’Id), (C. M’Bareck)

Acknowledgments

The authors thank Nouakchott Al-Aasriya University, Mauritania for its support.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: No external funding was received for this investigation.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zhang, Q., Zhang, T., He, T., Chen, L. Removal of crystal violet by clay/PNIPAm nanocomposite hydrogels with various clay contents. Appl. Clay Sci. 2014, 90, 1–5; https://doi.org/10.1016/j.clay.2014.01.003.Suche in Google Scholar

2. Kulkarni, M. R., Revanth, T., Acharya, A., Bhat, P. Removal of crystal violet dye from aqueous solution using water hyacinth: equilibrium, kinetics and thermodynamics study. Resour. Technol. 2017, 3, 71–77; https://doi.org/10.1016/j.reffit.2017.01.009.Suche in Google Scholar

3. Shedbalkar, U., Jadhav, J. P. Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron. Biotechnol. Bioproc. Eng. 2011, 16, 196–204; https://doi.org/10.1007/s12257-010-0069-0.Suche in Google Scholar

3a. Permissible synthetic food dyes in India. Reson. J. Sci. Educ. 2020, 25, 567–577; https://doi.org/10.1007/s12045-020-0970-6.Suche in Google Scholar

4. Du, C., Song, Y., Shi, S., Jiang, B., Yang, J., Xiao, S. Preparation and characterization of a novel Fe3O4–graphene-biochar composite for crystal violet adsorption. Sci. Total Environ. 711, 134662; https://doi.org/10.1016/j.scitotenv.2019.134662.Suche in Google Scholar PubMed

4a. Mittal, J. Recent progress in the synthesis of layered double hydroxides and their application for the adsorptive removal of dyes: a review. J. Environ. Manag. 2021, 295, 113017; https://doi.org/10.1016/j.jenvman.2021.113017.Suche in Google Scholar PubMed

5. Heloise, B. Q., Aline, T. A. B., Luis, F. C., Seibert, D., Charleston, O. B., Rosangela, B. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere 2019, 222, 766–780.10.1016/j.chemosphere.2019.02.009Suche in Google Scholar PubMed

6. Bolong, N., Ismail, A. F., Salim, M. R., Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239, 229–246; https://doi.org/10.1016/j.desal.2008.03.020.6a. Mohamed, S., Kucinska-Lipka, J., Sienkiewicz, M., Gierak, A. Development, characterization and evaluation of composite adsorbent for the adsorption of crystal violet from aqueous solution: isotherm, kinetics, and thermodynamic studies. Arab. J. Chem. 2021, 14, 103115.6b. Patel, A., Soni, S., Mittal, J., Mittal, A., Arora, C. Sequestration of crystal violet from aqueous solution using ash of black turmeric rhizome. Desalination Water Treat. 2021, 220, 342–352; https://doi.org/10.5004/dwt.2021.26911.Suche in Google Scholar

7. Ahmad, R. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J. Hazard Mater. 2009, 171, 767–773; https://doi.org/10.1016/j.jhazmat.2009.06.060.Suche in Google Scholar PubMed

8. Mohanty, K., Naidu, J. T., Meikap, B. C., Biswas, M. N. Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind. Eng. Chem. Res. 2006, 45, 5165–5171; https://doi.org/10.1021/ie060257r.8a. Hussain, D., Khan, S. A., Khan, T. A. Fabrication and characterization of mesoporous guar gum/NiWO4 nanocomposite for efficient adsorption of phloxine B and crystal violet from aqueous solution and evaluation of its antioxidant activity. Colloid Interface Sci. Commun. 2021, 44, 100488; https://doi.org/10.1016/j.colcom.2021.100488.Suche in Google Scholar

9. Priya, S. E., Senthamil Selvan, P. Water hyacinth (Eichhornia crassipes) – an efficient and economic adsorbent for textile effluent treatment – a review. Arab. J. Chem. 2017, 10, S3548–S3558; https://doi.org/10.1016/j.arabjc.2014.03.002.Suche in Google Scholar

10. Mansor, E. S., Abdallah, H., Shaban, A. M. Fabrication of high selectivity blend membranes based on poly vinyl alcohol for crystal violet dye removal. J. Environ. Chem. Eng. 2020, 8, 10370; https://doi.org/10.1016/j.jece.2020.103706.Suche in Google Scholar

11. Patil, S. R., Sutar, S. S., Jadhav, J. P. Sorption of crystal violet from aqueous solution using live roots of Eichhornia crassipes: kinetic, isotherm, phyto and cyto-genotoxicity studies. Environ. Technol. Innov. 2020, 18, 100648; https://doi.org/10.1016/j.eti.2020.100648.Suche in Google Scholar

12. Puri, C., Sumana, G. Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite. Appl. Clay Sci. 2018, 166, 102–112; https://doi.org/10.1016/j.clay.2018.09.012.Suche in Google Scholar

13. Nasiri, S., Alizadeh, N. Synthesis and adsorption behavior of hydroxypropyl-β-cyclodextrin-polyurethane magnetic nanoconjugates for crystal and methyl violet dyes removal from aqueous solutions. RSC Adv. 2009, 9, 24603–24616.10.1039/C9RA03335ASuche in Google Scholar

14. Abu Elella, M. H., Sabaa, M. W., El Hafeez, E. A., Mohamed, R. R. Crystal violet dye removal using crosslinked grafted xanthan gum. Int. J. Biol. Macromol. 2019, 137, 1086–1101; https://doi.org/10.1016/j.ijbiomac.2019.06.243.Suche in Google Scholar PubMed

15. Djelad, A., Mokhtar, A., Khelifa, A., Bengueddach, A., Sassi, M. Alginate-whey an effective and green adsorbent for crystal violet removal: kinetic, thermodynamic and mechanism studies. Int. J. Biol. Macromol. 2019, 139, 944–954; https://doi.org/10.1016/j.ijbiomac.2019.08.068.Suche in Google Scholar PubMed

16. Sharma, G., Kumar, A., Naushad, M., Garcias, P. A., Al-Muhtaseb, A. H., AGhfar, A., Sharma, V., Ahamad, T., Stadler, F. J. Fabrication and characterization of Gum Arabic-cl-poly(acrylamide) nanohydrogel for effective adsorption of crystal violet dye. Carbohydr. Polym. 2018, 202, 444–453; https://doi.org/10.1016/j.carbpol.2018.09.004.Suche in Google Scholar PubMed

17. Oloo, C. M., Onyari, J. M., Wanyonyi, W. C., Wabomba, J. N., Muinde, V. M. Adsorptive removal of hazardous crystal violet dye form aqueous solution using Rhizophora mucronata stem-barks: equilibrium and kinetics studies. Environ. Chem. Ecotoxicol. 2020, 2, 64–72; https://doi.org/10.1016/j.enceco.2020.05.001.Suche in Google Scholar

18. Omer, A. M., Elgarhy, G. S., El-Subruiti, G. M., Khalifa, R. E., Eltaweil, A. S. Fabrication of novel iminodiacetic acid-functionalized carboxymethyl cellulose microbeads for efficient removal of cationic crystal violet dye from aqueous solutions. Int. J. Biol. Macromol. 2018, 148, 1072–1083; https://doi.org/10.1016/j.ijbiomac.2020.01.182.Suche in Google Scholar PubMed

19. Nasiri, J., Motamedi, E., Naghavi, M. R., Ghafuri, M. Removal of crystal violet from water using β-cyclodextrin functionalized biogenic zero-valent iron nanoadsorbents synthesized via aqueous root extracts of Ferula persica. J. Hazard Mater. 2019, 367, 325–338; https://doi.org/10.1016/j.jhazmat.2018.12.079.Suche in Google Scholar

20. Mahmoud, M. E., Nabil, G. M., Khalifa, M. A., El-Mallah, N. M., Hassouba, H. M. Effective removal of crystal violet and methylene blue dyes from water by surface functionalized zirconium silicate nanocomposite. J. Environ. Chem. Eng. 2019, 7, 103009; https://doi.org/10.1016/j.jece.2019.103009.Suche in Google Scholar

21. Fabryanty, R., Valencia, C., Soetaredjo, F. E., Putro, J. N., Santoso, S. P., Kurniawan, A., Ju, Y. H., Ismadji, S. Removal of crystal violet dye by adsorption using bentonite–alginate composite. J. Environ. Chem. Eng. 2017, 5, 5677–5687; https://doi.org/10.1016/j.jece.2017.10.057.21a. Soni, S., Kumar Bajpai, P., Bharti, D., Mittal, J., Arora, C. Removal of crystal violet from aqueous solution using iron based metal organic framework. Desalination Water Treat. 2020, 205, 386–399.Suche in Google Scholar

22. Li, K., Wu, W., Chai, S., Tang, L., Li, J., Li, Y., Liu, Q., Chen, L. Synthesis of functionalized copolymers and their compatibilization effects on acrylonitrile butadiene styrene/poly(butylene terephthalate)blends. Polym. Eng. Sci. 2020, 60, 2967–2978; https://doi.org/10.1002/pen.25526.Suche in Google Scholar

23. M’Bareck, C., Cheikh S’Id, E., Kheribech, A., Elouahli, A., Hatim, Z. Synthesis of poly acrylonitrile-co-sodium methallyl sulfonate copolymer (AN69) and poly acrylic acid (PAA) membranes for the removal of methylene blue from water. Polym. Bull. 2020, 77, 5454–5467.10.1007/s00289-019-03024-2Suche in Google Scholar

24. Cheikh S’Id, E., Kheribech, A., Degué, M., Hatim, Z., Chourak, R., M’Bareck, C. Removal of methyleneblue from water by polyacrylonitrile-co-sodium methallylsulfonate copolymer (AN69) and polysulfone (PSf) synthetic membranes. Prog. Color Colorants Coat. 2021, 14, 89–100.Suche in Google Scholar

25. Abdelhamid, A. E., El-Sayed, A. A., Khalil, A. M. Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater. J. Polym. Eng. 2020, 40, 833–841; https://doi.org/10.1515/polyeng-2020-0141.Suche in Google Scholar

26. Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., Maina, E. N. Adsorption of toxic crystal violet dye using coffee husks: equilibrium, kinetics and thermodynamics study. Sci. Afr. 2019, 5, e00116; https://doi.org/10.1016/j.sciaf.2019.e00116.Suche in Google Scholar

27. Ferrandon, O., Bouabane, H., Mazet, M. Contribution à l’étude de la validité de différents modèles, utilisés lors de l’adsorption de solutés sur charbon actif. Rev. Sci. Eau 1995, 8, 183–200.10.7202/705218arSuche in Google Scholar

28. Yuh-Shan, H. Removal of copper ions from aqueous solution by tree fern. Water Res. 2003, 37, 2323–2330.10.1016/S0043-1354(03)00002-2Suche in Google Scholar

29. Peyratout, C., Donath, E., Daehne, L. Electrostatic interactions of cationic dyes with negatively charged polyelectrolytes in aqueous solution. J. Photochem. Photobiol. Chem. 2001, 142, 51–57; https://doi.org/10.1016/s1010-6030(01)00490-7.Suche in Google Scholar

30. Ouradia, A., Nguyen, Q. T., Benaboura, A. Polysulfone–AN69 blend membranes and its surface modification by polyelectrolyte-layer deposit—preparation and characterization. J. Membr. Sci. 2014, 454, 20–35; https://doi.org/10.1016/j.memsci.2013.11.048.Suche in Google Scholar

31. Hubbe, M. A., Azizian, S., Douven, S. Implication of pseudo-second-order adsorption kinetics on cellulosic materials: a review. Bioresources 2019, 14, 7582–7626; https://doi.org/10.15376/biores.14.3.7582-7626.Suche in Google Scholar

Received: 2021-07-12
Accepted: 2021-10-27
Published Online: 2021-12-10
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0202/html
Button zum nach oben scrollen