Abstract
Cobalt, nickel, and their mixed hydroxides were electrochemically deposited on polythiophene-coated carbon-cloth substrate to develop new pseudo-capacitive electrodes for energy storage devices. Thiophene was electro-polymerized on carbon-cloth by the potentiodynamic method in acetonitrile containing 1-butyl-2,3-dimethylimidazolium hexafluorophosphate ionic-liquid as supporting electrolyte. The scanning-electron-microscopy images imply that flower-like Co(OH)2 microstructures deposited on bamboo-like polythiophene coatings on carbon-fibers but they are covered by net curtain like thin Ni(OH)2 layer. The Co-Ni layered-double-hydroxide deposited from their equimolar sulfate solutions is composed of large aggregates. The electron-dispersive-spectrum exhibits that Co/Ni ratio equals unity in the layered-double-hydroxide. The capacitances of Co, Ni, and Co-Ni hydroxide-coated PTh electrodes are 100, 569, and 221 F/g at 5 mA/cm2 in 1 M KOH solution, respectively. Their corresponding oxides obtained by calcination at 450 °C in de-aerated medium possess higher capacitance up to 911, 643, and 696 F/g at 2 A/cm2. The shape of cyclic-voltammetry and galvanostatic-charge-discharge curves, as well as the Nyquist plots derived from electrochemical-impedance-spectroscopy measurements, reveal that hydroxide coatings on the polythiophene-coated carbon-cloth are more promising electrode materials for supercapacitor applications. The mixed hydroxide-coated electrode shows good cyclic stability of 100% after 400 cycles at 5 mA/cm2.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Wang, T., Li, K., Le, Q., Zhu, S., Guo, X., Jiang, D., Zhang, Y. Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 2021, 594, 812–823; https://doi.org/10.1016/j.jcis.2021.03.075.Suche in Google Scholar PubMed
2. Li, K., Liu, X., Zheng, T., Jiang, D., Zhou, Z., Liu, C., Zhang, X., Zhang, Y., Losic, D. Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem. Eng. J. 2019, 370, 136–147; https://doi.org/10.1016/j.cej.2019.03.190.Suche in Google Scholar
3. Liu, L., Ma, K. Y., Liu, F., Zhang, X. B., Cheng, J. P. Effects of Co/Ni ratio on the supercapacitive properties of α-form hydroxides. Eur. J. Inorg. Chem. 2015, 2448–2456; https://doi.org/10.1002/ejic.201500118.Suche in Google Scholar
4. Wang, X., Yan, C., Sumboja, A., Lee, P. S. High performance porous nickel cobaltoxide nanowires for a symmetric supercapacitor. Nano Energy 2014, 3, 119–126; https://doi.org/10.1016/j.nanoen.2013.11.001.Suche in Google Scholar
5. Xu, J., Ju, Z., Cao, J., Wang, W., Wang, C., Chen, Z. Microwave synthesis of nitrogen-doped mesoporous carbon/nickel cobalt hydroxide microspheres for high-performance supercapacitors. J. Alloys Compd. 2016, 689, 489–499; https://doi.org/10.1016/j.jallcom.2016.08.006.Suche in Google Scholar
6. Li, H. B., Gao, Y., Wang, C., Yang, G. A simple electrochemical route to access amorphous mixed-metal hydroxides for supercapacitor electrode materials. Adv. Energ. Mater. 2015, 5, 1401767; https://doi.org/10.1002/aenm.201401767.Suche in Google Scholar
7. Wei, T. Y., Chen, C. H., Chien, H. C., Lu, S. Y., Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 2010, 22, 347–351; https://doi.org/10.1002/adma.200902175.Suche in Google Scholar PubMed
8. Liu, S., Wu, J., Zhou, J., Fang, G., Liang, S. Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. Electrochim. Acta 2015, 176, 1–9; https://doi.org/10.1016/j.electacta.2015.06.131.Suche in Google Scholar
9. Li, M., Cheng, J. P., Liu, F., Zhang, X. B. In situ growth of nickel–cobalt oxyhydroxide/oxide on carbon nanotubes for high performance supercapacitors. Electrochim. Acta 2015, 178, 439–446; https://doi.org/10.1016/j.electacta.2015.08.041.Suche in Google Scholar
10. Majeed, A., Ullah, W., Anwar, A. W., Nasreen, F., Sharif, A., Mustafa, G., Khan, A. Graphene-metal oxides/hydroxide nanocomposite materials: fabrication advancements and supercapacitive performance. J. Alloys Compd. 2016, 671, 1–10; https://doi.org/10.1016/j.jallcom.2015.12.083.Suche in Google Scholar
11. Patil, U. M., Sohn, J. S., Kulkarni, S. B., Lee, S. C., Park, H. G., Gurav, K. V., Kim, J. H., Jun, S. C. Enhanced supercapacitive performance of chemically grown cobalt–nickel hydroxides on three-dimensional graphene foam electrodes. ACS Appl. Mater. Interfaces 2014, 6, 2450–2458; https://doi.org/10.1021/am404863z.Suche in Google Scholar PubMed
12. Dong, S., Dao, A. Q., Zheng, B., Tan, Z., Fu, C., Liu, H., Xiao, F. One-step electrochemical synthesis of three-dimensional grapheme foam loaded nickel–cobalt hydroxides nanoflakes and its electrochemical properties. Electrochim. Acta 2015, 152, 195–201; https://doi.org/10.1016/j.electacta.2014.09.061.Suche in Google Scholar
13. Hu, C. C., Chen, J. C., Chang, K. H. Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: importance of the electrochemical reversibility of redox couples. J. Power Sources 2013, 221, 128–133; https://doi.org/10.1016/j.jpowsour.2012.07.111.Suche in Google Scholar
14. Wu, M. S., Zheng, Z. B., Lai, Y. S., Jow, J. J. Nickel cobaltite nanograss grown around porous carbon nanotube-wrapped stainless steel wire mesh as a flexible electrode for high-performance supercapacitor application. Electrochim. Acta 2015, 182, 31–38; https://doi.org/10.1016/j.electacta.2015.09.049.Suche in Google Scholar
15. Zhu, Y. G., Wang, Y., Shi, Y., Wong, J., Yang, H. Y. CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 2014, 3, 46–54; https://doi.org/10.1016/j.nanoen.2013.10.006.Suche in Google Scholar
16. Cheng, Y., Zhang, H., Varanasiac, C. V., Liu, J. Improving the performance of cobalt–nickel hydroxide based self-supporting electrodes for supercapacitors using accumulative approaches. Energy Environ. Sci. 2013, 6, 3314–3321; https://doi.org/10.1039/c3ee41143e.Suche in Google Scholar
17. Wang, X., Han, X., Lim, M., Singh, N., Gan, C. L., Jan, M., Lee, P. S. Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J. Phys. Chem. C 2012, 116, 12448–12454; https://doi.org/10.1021/jp3028353.Suche in Google Scholar
18. Fan, Z., Chen, J., Cui, K., Sun, F., Xu, Y., Kuang, Y. Preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites. Electrochim. Acta 2007, 52, 2959–2965; https://doi.org/10.1016/j.electacta.2006.09.029.Suche in Google Scholar
19. Warsi, M. F., Shakir, I., Shahid, M., Sarfraz, M., Nadeem, M., Gilani, Z. A. Conformal coating of cobalt-nickel layered double hydroxides nanoflakes on carbon fibers for high-performance electrochemical energy storage supercapacitor devices. Electrochim. Acta 2014, 135, 513–518; https://doi.org/10.1016/j.electacta.2014.05.020.Suche in Google Scholar
20. Li, D., Li, Y., Zhao, J., Xu, Z., Zhang, H. Three-dimensional porous layered double hydroxides growing on carbon cloth as binder-free electrodes for supercapacitors. J. Mater. Res. 2017, 32, 2487–2496; https://doi.org/10.1557/jmr.2017.227.Suche in Google Scholar
21. Liu, Y., Fu, N., Zhang, G., Xu, M., Lu, W., Zhou, L., Huang, H. Design of hierarchical Ni–Co@Ni–Co layered double hydroxide core–shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors. Adv. Funct. Mater. 2017, 27, 1–11; https://doi.org/10.1002/adfm.201605307.Suche in Google Scholar
22. Huang, L., Chen, D., Ding, Y., Feng, S., Wang, Z. L., Liu, M. Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139; https://doi.org/10.1021/nl401086t.Suche in Google Scholar PubMed
23. Marichi, R. B., Sahu, V., Lalwani, S., Mishra, M., Gupta, G., Sharma, R. K., Singh, G. Nickel-shell assisted growth of nickel–cobalt hydroxide nanofibres and their symmetric/asymmetric supercapacitive characteristics. J. Power Sources 2016, 325, 762–771; https://doi.org/10.1016/j.jpowsour.2016.06.053.Suche in Google Scholar
24. Huang, J., Xu, P., Cao, D., Zhou, X., Yang, S., Li, Y., Wang, G. Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density. J. Power Sources 2014, 246, 371–376; https://doi.org/10.1016/j.jpowsour.2013.07.105.Suche in Google Scholar
25. Cho, H. W., Nam, J. H., Park, J. H., Kim, K. M., Ko, J. M. Supercapacitive properties of Co–Ni mixed oxide electrode adopting the nickel foam as a current collector. Bull. Kor. Chem. Soc. 2012, 33, 3993–3997; https://doi.org/10.5012/bkcs.2012.33.12.3993.Suche in Google Scholar
26. Kandalkar, S. G., Lee, H. M., Seo, S. H., Lee, K., Kim, C. K. Cobalt–nickel composite films synthesized by chemical bath deposition method as an electrode material for supercapacitors. J. Mater. Sci. 2011, 46, 2977–2981; https://doi.org/10.1007/s10853-010-5174-0.Suche in Google Scholar
27. Wang, H., Gao, Q., Jiang, L. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 2011, 7, 2454–2459; https://doi.org/10.1002/smll.201100534.Suche in Google Scholar PubMed
28. Lokhande, C. D., Dubal, D. P., Joo, O. S. Metal oxide thin film based supercapacitors. Curr. Appl. Phys. 2011, 11, 255–270; https://doi.org/10.1016/j.cap.2010.12.001.Suche in Google Scholar
29. Guan, C., Liu, J., Cheng, C., Li, H., Li, X., Zhou, W., Zhang, H., Fan, H. J. Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ. Sci. 2011, 4, 4496–4499; https://doi.org/10.1039/c1ee01685g.Suche in Google Scholar
30. Faraji, S., Ani, F. N. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors. J. Power Sources 2014, 263, 338–360; https://doi.org/10.1016/j.jpowsour.2014.03.144.Suche in Google Scholar
31. Gupta, V., Gupta, S., Miura, N. Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors. J. Power Sources 2008, 175, 680–685; https://doi.org/10.1016/j.jpowsour.2007.09.004.Suche in Google Scholar
32. Zhang, J., Liu, F., Cheng, J. P., Zhang, X. B. Binary nickel–cobalt oxides electrode materials for high-performance supercapacitors: influence of its composition and porous nature. ACS Appl. Mater. Interfaces 2015, 7, 17630–17640; https://doi.org/10.1021/acsami.5b04463.Suche in Google Scholar PubMed
33. Li, H. B., Gao, Y. Q., Yang, G. W. Electrochemical route for accessing amorphous mixed-metal hydroxide nanospheres and magnetism. RSC Adv. 2015, 5, 45359–45367; https://doi.org/10.1039/c4ra14370a.Suche in Google Scholar
34. Wang, C., Liu, J., Huang, H. Pseudocapacitive performance of Co(OH)2 enhanced by Ni(OH)2 formation on porous Ni/Cu electrode. Electrochim. Acta 2015, 182, 47–60; https://doi.org/10.1016/j.electacta.2015.08.158.Suche in Google Scholar
35. Lu, X., Huang, X., Xie, S., Zhai, T., Wang, C., Zhang, P., Yu, M., Li, W., Liang, C., Tong, Y. Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors. J. Mater. Chem. 2012, 22, 13357–13364; https://doi.org/10.1039/c2jm30927k.Suche in Google Scholar
36. Wang, X., Sumboja, A., Lin, M., Yan, J., Lee, P. S. Enhancing electrochemical reaction sites in nickel–cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 2012, 4, 7266–7272; https://doi.org/10.1039/c2nr31590d.Suche in Google Scholar PubMed
37. Kulkarni, S. B., Jagadale, A. D., Kumbhar, V. S., Bulakhe, R. N., Joshi, S. S., Lokhande, C. D. Potentiodynamic deposition of composition Influenced Co1−xNix LDHs thin film electrode for redox supercapacitors. Int. J. Hydrogen Energy 2013, 38, 4046–4053; https://doi.org/10.1016/j.ijhydene.2013.01.047.Suche in Google Scholar
38. Nguyen, T., Boudard, M., Carmezim, M. J., Montemor, M. F. Layered Ni(OH)2–Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors. Nat. Sci. Rep. 2012, 7, 39980; https://doi.org/10.1038/srep39980.Suche in Google Scholar PubMed PubMed Central
39. Lee, J. Y., Liang, K., Ana, K. H., Lee, Y. H. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance. Synth. Met. 2005, 150, 153–157; https://doi.org/10.1016/j.synthmet.2005.01.016.Suche in Google Scholar
40. Tang, Y., Liu, Y., Guo, W., Yu, S., Gao, F. Floss-like Ni–Co binary hydroxides assembled by whisker-like nanowires for high-performance supercapacitor. Ionics 2015, 21, 1655–1663; https://doi.org/10.1007/s11581-014-1319-5.Suche in Google Scholar
41. Li, C., Liu, S. Preparation and characterization of Ni(OH)2 and NiO mesoporous nanosheets. J. Nanomater. 2012, 648012, 1–6; https://doi.org/10.1155/2012/648012.Suche in Google Scholar
42. Chen, H., Hu, L., Chen, M., Yan, Y., Wu, L. Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 2014, 24, 934–942; https://doi.org/10.1002/adfm.201301747.Suche in Google Scholar
43. Mondal, A. K., Su, D., Chen, S., Kretschmer, K., Xie, X., Ahn, H. J., Wang, G. A microwave synthesis of mesoporous NiCo2O4. nanosheets as electrode materials for lithium-ion batteries and supercapacitors. ChemPhysChem 2015, 16, 169–175; https://doi.org/10.1002/cphc.201402654.Suche in Google Scholar PubMed
44. Mehdizadeh, R., Saghatforoush, L. A., Sanati, S. Synthesis and characterization of β-Co(OH)2, CuO and ZnO nanostructures by solvothermal method without any additive. J. Chin. Chem. Soc. 2013, 60, 339–344; https://doi.org/10.1002/jccs.201200419.Suche in Google Scholar
45. Shinde, M., Qureshi, N., Rane, S., Ahn, C., Kim, T., Amalnerkar, D. Morphological evolution of nanorod to submicron brick-like cobalt oxide structures under microwave solvothermal regime. Sci. Adv. Mater. 2016, 8, 144–148.10.1166/sam.2018.2950Suche in Google Scholar
46. Shinde, M., Qureshi, N., Rane, S., Mulik, U., Amalnerkar, D. Synthesis of cobalt oxide nanostructures by microwave assisted solvothermal technique using binary solvent system. Phys. Chem. Commun. 2015, 2, 1–9.Suche in Google Scholar
47. Jana, M., Saha, S., Samanta, P., Murmu, N. C., Kim, N. H., Kuila, T., Lee, J. H. Growth of Ni–Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (SILAR) method for high performance asymmetric supercapacitor electrodes. J. Mater. Chem. A 2016, 4, 2188–2197; https://doi.org/10.1039/c5ta10297a.Suche in Google Scholar
48. Krishnamoorthy, K., Pazhamalai, P., Mariappan, V. K., Manoharan, S., Kesavan, D., Kim, S-.J. Two-Dimensional siloxene–graphene heterostructure-based high-performance supercapacitor for capturing regenerative braking energy in electric vehicles. Adv. Funct. Mater. 2021, 31, 2008422; https://doi.org/10.1002/adfm.202008422.Suche in Google Scholar
49. Krishnamoorthy, K., Pazhamalai, P., Mariappan, V. K., Nardekar, S. S., Sahoo, S., Kim, S. J. Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat. Commun. 2020, 11, 2351; https://doi.org/10.1038/s41467-020-15808-6.Suche in Google Scholar PubMed PubMed Central
50. He, X., Suna, B., Gao, B., Pang, A., Suoa, H., Zhao, C. Various micromorphologies and electrochemical properties of polyaniline/carbon cloth composite nanomaterial were induced for supercapacitors. J. Electroanal. Chem. 2017, 792, 88–94; https://doi.org/10.1016/j.jelechem.2017.03.029.Suche in Google Scholar
51. Bavio, M. A., Acosta, G. G., Kessler, T., Visintin, A. Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline – carbon nanotubes. Energy 2017, 130, 22–28; https://doi.org/10.1016/j.energy.2017.04.135.Suche in Google Scholar
52. Malik, R., Zhang, L., McConnell, C., Schott, M., Hsieh, Y. Y., Noga, R., Alvarez, N. T., Shanov, V. Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon 2017, 116, 579–590; https://doi.org/10.1016/j.carbon.2017.02.036.Suche in Google Scholar
53. Bhardwaj, P., Kaushik, S., Gairola, P., Gairola, S. P. Polyaniline enfolded hybrid carbon array substrate electrode for high performance supercapacitors. J. Polym. Eng. 2019, 39, 228–238; https://doi.org/10.1515/polyeng-2018-0292.Suche in Google Scholar
54. Zhou, H., Han, G., Xiao, Y., Chang, Y., Zhai, H. J. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J. Power Sources 2014, 263, 259–267; https://doi.org/10.1016/j.jpowsour.2014.04.039.Suche in Google Scholar
55. Zhou, H., Han, G. One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors. Electrochim. Acta 2016, 192, 448–455; https://doi.org/10.1016/j.electacta.2016.02.015.Suche in Google Scholar
56. Li, K., Feng, S., Jing, C., Chen, Y., Liu, X., Zhang, Y., Zhou, L. Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem. Commun. 2019, 55, 13773–13776; https://doi.org/10.1039/c9cc06791d.Suche in Google Scholar
57. Laforgue, A., Simon, P., Sarrazin, C., Fauvarque, J. F. Polythiophene-based supercapacitors. J. Power Sources 1999, 80, 142–148; https://doi.org/10.1016/s0378-7753(98)00258-4.Suche in Google Scholar
58. Yu, D., Qian, Q., Wei, L., Jiang, W., Goh, K., Wei, J., Jie, Z., Chen, Y. Emergence of fiber supercapacitors. Chem. Soc. Rev. 2015, 44, 647–662; https://doi.org/10.1039/c4cs00286e.Suche in Google Scholar
59. Shown, I., Ganguly, A., Chen, L. C., Chen, K. H. Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 2015, 3, 2–26; https://doi.org/10.1002/ese3.50.Suche in Google Scholar
60. Frackowiak, E., Béguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937–950; https://doi.org/10.1016/s0008-6223(00)00183-4.Suche in Google Scholar
61. Cao, J., Li, L., Xi, Y., Li, J., Pan, X., Chen, D., Han, W. Core–shell structural PANI-derived carbon@Co–Ni LDH electrode for high-performance asymmetric supercapacitors. Sustain. Energy Fuels 2018, 2, 1350–1355; https://doi.org/10.1039/c8se00123e.Suche in Google Scholar
62. Wu, K., Zhao, J., Wu, R., Ruan, B., Liu, H., Wu, M. The impact of Fe3+ doping on the flexible polythiophene electrodes for supercapacitors. J. Electroanal. Chem. 2018, 823, 527–530; https://doi.org/10.1016/j.jelechem.2018.06.052.Suche in Google Scholar
63. Naudin, E., Ho, H. A., Branchaud, S., Breau, L., Bélanger, D. Electrochemical polymerization and characterization of poly(3-(4-fluorophenyl)thiophene) in pure ionic liquids. J. Phys. Chem. B 2002, 106, 10585–10595; https://doi.org/10.1021/jp020770s.Suche in Google Scholar
64. Pang, Y., Xu, H., Li, X., Ding, H., Cheng, Y., Shi, G., Jin, L. Electrochemical synthesis, characterization, and electrochromic properties of poly(3-chlorothiophene) and its copolymer with 3-methylthiophene in a room temperature ionic liquid. Electrochem. Commun. 2006, 8, 1757–1763; https://doi.org/10.1016/j.elecom.2006.08.007.Suche in Google Scholar
65. Ryu, W. H., Kim, Y. S., Kim, J. H., Cheong, I. W. Direct synthetic route for water-dispersible polythiophene nanoparticles via surfactant-free oxidative polymerization. Polymer 2014, 55, 806–812; https://doi.org/10.1016/j.polymer.2013.12.056.Suche in Google Scholar
66. Khan, R. U. A., Martineau, P. M., Cann, B. L., Newton, Mark. E., Dhillon, H. K., Daniel, J. Twitchen color alterations in CVD synthetic diamond with heat and UV exposure: implications for color grading and identification. Gems Gemol. 2010, 46, 18–26; https://doi.org/10.5741/gems.46.1.18.Suche in Google Scholar
67. Li, Q., Li, Y., Peng, H., Cui, X., Zhou, M., Feng, K., Xiao, P. Layered NH4CoxNi1−xPO4_H2O (0 < x < 1) nanostructures finely tuned by Co/Ni molar ratios for asymmetric supercapacitor electrodes. J. Mater. Sci. 2016, 51, 9946–9957; https://doi.org/10.1007/s10853-016-0151-x.Suche in Google Scholar
68. Christy, A. J. Novel combustion method to prepare octahedral NiO nanoparticles and its photocatalytic activity. Mater. Res. Bull 2013, 48, 4248–4254; https://doi.org/10.1016/j.materresbull.2013.06.072.Suche in Google Scholar
69. Ahamed, P., Yousuf, M. A. Tissue matrices scaf-fold for the preparation of lithium cobalt oxide. Adv. Mater. Phys. Chem. 2020, 10, 111–124; https://doi.org/10.4236/ampc.2020.105009.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Dynamic crystallization behavior of PA-12/PP-MWCNT nanocomposites: non-isothermal kinetics approach
- Effect of antiblock and slip additives on the properties of tubular quenched polypropylene film
- A local green composite study: the effect of edible oil on the morphological and mechanical properties of PBS/bentonite composite
- Effect of infill density and pattern on the specific load capacity of FDM 3D-printed PLA multi-layer sandwich
- Improving the rheological properties of water-based calcium bentonite drilling fluids using water-soluble polymers in high temperature applications
- Mechanical, thermal and morphological properties of polyoxymethylene nanocomposite for application in gears of diaphragm gas meters
- Preparation and Assembly
- Capacitive performance of electrochemically deposited Co/Ni oxides/hydroxides on polythiophene-coated carbon-cloth
- Engineering and Processing
- Nano-SiO2/hydroxyethyl cellulose nanocomposite used for 210 °C sedimentation control of petroleum drilling fluid
- Removal of crystal violet from water by poly acrylonitrile-co-sodium methallyl sulfonate (AN69) and poly acrylic acid (PAA) synthetic membranes
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Dynamic crystallization behavior of PA-12/PP-MWCNT nanocomposites: non-isothermal kinetics approach
- Effect of antiblock and slip additives on the properties of tubular quenched polypropylene film
- A local green composite study: the effect of edible oil on the morphological and mechanical properties of PBS/bentonite composite
- Effect of infill density and pattern on the specific load capacity of FDM 3D-printed PLA multi-layer sandwich
- Improving the rheological properties of water-based calcium bentonite drilling fluids using water-soluble polymers in high temperature applications
- Mechanical, thermal and morphological properties of polyoxymethylene nanocomposite for application in gears of diaphragm gas meters
- Preparation and Assembly
- Capacitive performance of electrochemically deposited Co/Ni oxides/hydroxides on polythiophene-coated carbon-cloth
- Engineering and Processing
- Nano-SiO2/hydroxyethyl cellulose nanocomposite used for 210 °C sedimentation control of petroleum drilling fluid
- Removal of crystal violet from water by poly acrylonitrile-co-sodium methallyl sulfonate (AN69) and poly acrylic acid (PAA) synthetic membranes