Home Capacitive performance of electrochemically deposited Co/Ni oxides/hydroxides on polythiophene-coated carbon-cloth
Article
Licensed
Unlicensed Requires Authentication

Capacitive performance of electrochemically deposited Co/Ni oxides/hydroxides on polythiophene-coated carbon-cloth

  • Gülten Atun EMAIL logo , Filiz Şahin , Elif Türker Acar ORCID logo and Sinem Ortaboy
Published/Copyright: December 10, 2021
Become an author with De Gruyter Brill

Abstract

Cobalt, nickel, and their mixed hydroxides were electrochemically deposited on polythiophene-coated carbon-cloth substrate to develop new pseudo-capacitive electrodes for energy storage devices. Thiophene was electro-polymerized on carbon-cloth by the potentiodynamic method in acetonitrile containing 1-butyl-2,3-dimethylimidazolium hexafluorophosphate ionic-liquid as supporting electrolyte. The scanning-electron-microscopy images imply that flower-like Co(OH)2 microstructures deposited on bamboo-like polythiophene coatings on carbon-fibers but they are covered by net curtain like thin Ni(OH)2 layer. The Co-Ni layered-double-hydroxide deposited from their equimolar sulfate solutions is composed of large aggregates. The electron-dispersive-spectrum exhibits that Co/Ni ratio equals unity in the layered-double-hydroxide. The capacitances of Co, Ni, and Co-Ni hydroxide-coated PTh electrodes are 100, 569, and 221 F/g at 5 mA/cm2 in 1 M KOH solution, respectively. Their corresponding oxides obtained by calcination at 450 °C in de-aerated medium possess higher capacitance up to 911, 643, and 696 F/g at 2 A/cm2. The shape of cyclic-voltammetry and galvanostatic-charge-discharge curves, as well as the Nyquist plots derived from electrochemical-impedance-spectroscopy measurements, reveal that hydroxide coatings on the polythiophene-coated carbon-cloth are more promising electrode materials for supercapacitor applications. The mixed hydroxide-coated electrode shows good cyclic stability of 100% after 400 cycles at 5 mA/cm2.


Corresponding author: Gülten Atun, Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpaşa, 34320 Avcılar, Istanbul, Turkey, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Wang, T., Li, K., Le, Q., Zhu, S., Guo, X., Jiang, D., Zhang, Y. Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 2021, 594, 812–823; https://doi.org/10.1016/j.jcis.2021.03.075.Search in Google Scholar PubMed

2. Li, K., Liu, X., Zheng, T., Jiang, D., Zhou, Z., Liu, C., Zhang, X., Zhang, Y., Losic, D. Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem. Eng. J. 2019, 370, 136–147; https://doi.org/10.1016/j.cej.2019.03.190.Search in Google Scholar

3. Liu, L., Ma, K. Y., Liu, F., Zhang, X. B., Cheng, J. P. Effects of Co/Ni ratio on the supercapacitive properties of α-form hydroxides. Eur. J. Inorg. Chem. 2015, 2448–2456; https://doi.org/10.1002/ejic.201500118.Search in Google Scholar

4. Wang, X., Yan, C., Sumboja, A., Lee, P. S. High performance porous nickel cobaltoxide nanowires for a symmetric supercapacitor. Nano Energy 2014, 3, 119–126; https://doi.org/10.1016/j.nanoen.2013.11.001.Search in Google Scholar

5. Xu, J., Ju, Z., Cao, J., Wang, W., Wang, C., Chen, Z. Microwave synthesis of nitrogen-doped mesoporous carbon/nickel cobalt hydroxide microspheres for high-performance supercapacitors. J. Alloys Compd. 2016, 689, 489–499; https://doi.org/10.1016/j.jallcom.2016.08.006.Search in Google Scholar

6. Li, H. B., Gao, Y., Wang, C., Yang, G. A simple electrochemical route to access amorphous mixed-metal hydroxides for supercapacitor electrode materials. Adv. Energ. Mater. 2015, 5, 1401767; https://doi.org/10.1002/aenm.201401767.Search in Google Scholar

7. Wei, T. Y., Chen, C. H., Chien, H. C., Lu, S. Y., Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 2010, 22, 347–351; https://doi.org/10.1002/adma.200902175.Search in Google Scholar PubMed

8. Liu, S., Wu, J., Zhou, J., Fang, G., Liang, S. Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. Electrochim. Acta 2015, 176, 1–9; https://doi.org/10.1016/j.electacta.2015.06.131.Search in Google Scholar

9. Li, M., Cheng, J. P., Liu, F., Zhang, X. B. In situ growth of nickel–cobalt oxyhydroxide/oxide on carbon nanotubes for high performance supercapacitors. Electrochim. Acta 2015, 178, 439–446; https://doi.org/10.1016/j.electacta.2015.08.041.Search in Google Scholar

10. Majeed, A., Ullah, W., Anwar, A. W., Nasreen, F., Sharif, A., Mustafa, G., Khan, A. Graphene-metal oxides/hydroxide nanocomposite materials: fabrication advancements and supercapacitive performance. J. Alloys Compd. 2016, 671, 1–10; https://doi.org/10.1016/j.jallcom.2015.12.083.Search in Google Scholar

11. Patil, U. M., Sohn, J. S., Kulkarni, S. B., Lee, S. C., Park, H. G., Gurav, K. V., Kim, J. H., Jun, S. C. Enhanced supercapacitive performance of chemically grown cobalt–nickel hydroxides on three-dimensional graphene foam electrodes. ACS Appl. Mater. Interfaces 2014, 6, 2450–2458; https://doi.org/10.1021/am404863z.Search in Google Scholar PubMed

12. Dong, S., Dao, A. Q., Zheng, B., Tan, Z., Fu, C., Liu, H., Xiao, F. One-step electrochemical synthesis of three-dimensional grapheme foam loaded nickel–cobalt hydroxides nanoflakes and its electrochemical properties. Electrochim. Acta 2015, 152, 195–201; https://doi.org/10.1016/j.electacta.2014.09.061.Search in Google Scholar

13. Hu, C. C., Chen, J. C., Chang, K. H. Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: importance of the electrochemical reversibility of redox couples. J. Power Sources 2013, 221, 128–133; https://doi.org/10.1016/j.jpowsour.2012.07.111.Search in Google Scholar

14. Wu, M. S., Zheng, Z. B., Lai, Y. S., Jow, J. J. Nickel cobaltite nanograss grown around porous carbon nanotube-wrapped stainless steel wire mesh as a flexible electrode for high-performance supercapacitor application. Electrochim. Acta 2015, 182, 31–38; https://doi.org/10.1016/j.electacta.2015.09.049.Search in Google Scholar

15. Zhu, Y. G., Wang, Y., Shi, Y., Wong, J., Yang, H. Y. CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 2014, 3, 46–54; https://doi.org/10.1016/j.nanoen.2013.10.006.Search in Google Scholar

16. Cheng, Y., Zhang, H., Varanasiac, C. V., Liu, J. Improving the performance of cobalt–nickel hydroxide based self-supporting electrodes for supercapacitors using accumulative approaches. Energy Environ. Sci. 2013, 6, 3314–3321; https://doi.org/10.1039/c3ee41143e.Search in Google Scholar

17. Wang, X., Han, X., Lim, M., Singh, N., Gan, C. L., Jan, M., Lee, P. S. Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J. Phys. Chem. C 2012, 116, 12448–12454; https://doi.org/10.1021/jp3028353.Search in Google Scholar

18. Fan, Z., Chen, J., Cui, K., Sun, F., Xu, Y., Kuang, Y. Preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites. Electrochim. Acta 2007, 52, 2959–2965; https://doi.org/10.1016/j.electacta.2006.09.029.Search in Google Scholar

19. Warsi, M. F., Shakir, I., Shahid, M., Sarfraz, M., Nadeem, M., Gilani, Z. A. Conformal coating of cobalt-nickel layered double hydroxides nanoflakes on carbon fibers for high-performance electrochemical energy storage supercapacitor devices. Electrochim. Acta 2014, 135, 513–518; https://doi.org/10.1016/j.electacta.2014.05.020.Search in Google Scholar

20. Li, D., Li, Y., Zhao, J., Xu, Z., Zhang, H. Three-dimensional porous layered double hydroxides growing on carbon cloth as binder-free electrodes for supercapacitors. J. Mater. Res. 2017, 32, 2487–2496; https://doi.org/10.1557/jmr.2017.227.Search in Google Scholar

21. Liu, Y., Fu, N., Zhang, G., Xu, M., Lu, W., Zhou, L., Huang, H. Design of hierarchical Ni–Co@Ni–Co layered double hydroxide core–shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors. Adv. Funct. Mater. 2017, 27, 1–11; https://doi.org/10.1002/adfm.201605307.Search in Google Scholar

22. Huang, L., Chen, D., Ding, Y., Feng, S., Wang, Z. L., Liu, M. Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139; https://doi.org/10.1021/nl401086t.Search in Google Scholar PubMed

23. Marichi, R. B., Sahu, V., Lalwani, S., Mishra, M., Gupta, G., Sharma, R. K., Singh, G. Nickel-shell assisted growth of nickel–cobalt hydroxide nanofibres and their symmetric/asymmetric supercapacitive characteristics. J. Power Sources 2016, 325, 762–771; https://doi.org/10.1016/j.jpowsour.2016.06.053.Search in Google Scholar

24. Huang, J., Xu, P., Cao, D., Zhou, X., Yang, S., Li, Y., Wang, G. Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density. J. Power Sources 2014, 246, 371–376; https://doi.org/10.1016/j.jpowsour.2013.07.105.Search in Google Scholar

25. Cho, H. W., Nam, J. H., Park, J. H., Kim, K. M., Ko, J. M. Supercapacitive properties of Co–Ni mixed oxide electrode adopting the nickel foam as a current collector. Bull. Kor. Chem. Soc. 2012, 33, 3993–3997; https://doi.org/10.5012/bkcs.2012.33.12.3993.Search in Google Scholar

26. Kandalkar, S. G., Lee, H. M., Seo, S. H., Lee, K., Kim, C. K. Cobalt–nickel composite films synthesized by chemical bath deposition method as an electrode material for supercapacitors. J. Mater. Sci. 2011, 46, 2977–2981; https://doi.org/10.1007/s10853-010-5174-0.Search in Google Scholar

27. Wang, H., Gao, Q., Jiang, L. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 2011, 7, 2454–2459; https://doi.org/10.1002/smll.201100534.Search in Google Scholar PubMed

28. Lokhande, C. D., Dubal, D. P., Joo, O. S. Metal oxide thin film based supercapacitors. Curr. Appl. Phys. 2011, 11, 255–270; https://doi.org/10.1016/j.cap.2010.12.001.Search in Google Scholar

29. Guan, C., Liu, J., Cheng, C., Li, H., Li, X., Zhou, W., Zhang, H., Fan, H. J. Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ. Sci. 2011, 4, 4496–4499; https://doi.org/10.1039/c1ee01685g.Search in Google Scholar

30. Faraji, S., Ani, F. N. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors. J. Power Sources 2014, 263, 338–360; https://doi.org/10.1016/j.jpowsour.2014.03.144.Search in Google Scholar

31. Gupta, V., Gupta, S., Miura, N. Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors. J. Power Sources 2008, 175, 680–685; https://doi.org/10.1016/j.jpowsour.2007.09.004.Search in Google Scholar

32. Zhang, J., Liu, F., Cheng, J. P., Zhang, X. B. Binary nickel–cobalt oxides electrode materials for high-performance supercapacitors: influence of its composition and porous nature. ACS Appl. Mater. Interfaces 2015, 7, 17630–17640; https://doi.org/10.1021/acsami.5b04463.Search in Google Scholar PubMed

33. Li, H. B., Gao, Y. Q., Yang, G. W. Electrochemical route for accessing amorphous mixed-metal hydroxide nanospheres and magnetism. RSC Adv. 2015, 5, 45359–45367; https://doi.org/10.1039/c4ra14370a.Search in Google Scholar

34. Wang, C., Liu, J., Huang, H. Pseudocapacitive performance of Co(OH)2 enhanced by Ni(OH)2 formation on porous Ni/Cu electrode. Electrochim. Acta 2015, 182, 47–60; https://doi.org/10.1016/j.electacta.2015.08.158.Search in Google Scholar

35. Lu, X., Huang, X., Xie, S., Zhai, T., Wang, C., Zhang, P., Yu, M., Li, W., Liang, C., Tong, Y. Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors. J. Mater. Chem. 2012, 22, 13357–13364; https://doi.org/10.1039/c2jm30927k.Search in Google Scholar

36. Wang, X., Sumboja, A., Lin, M., Yan, J., Lee, P. S. Enhancing electrochemical reaction sites in nickel–cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 2012, 4, 7266–7272; https://doi.org/10.1039/c2nr31590d.Search in Google Scholar PubMed

37. Kulkarni, S. B., Jagadale, A. D., Kumbhar, V. S., Bulakhe, R. N., Joshi, S. S., Lokhande, C. D. Potentiodynamic deposition of composition Influenced Co1−xNix LDHs thin film electrode for redox supercapacitors. Int. J. Hydrogen Energy 2013, 38, 4046–4053; https://doi.org/10.1016/j.ijhydene.2013.01.047.Search in Google Scholar

38. Nguyen, T., Boudard, M., Carmezim, M. J., Montemor, M. F. Layered Ni(OH)2–Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors. Nat. Sci. Rep. 2012, 7, 39980; https://doi.org/10.1038/srep39980.Search in Google Scholar PubMed PubMed Central

39. Lee, J. Y., Liang, K., Ana, K. H., Lee, Y. H. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance. Synth. Met. 2005, 150, 153–157; https://doi.org/10.1016/j.synthmet.2005.01.016.Search in Google Scholar

40. Tang, Y., Liu, Y., Guo, W., Yu, S., Gao, F. Floss-like Ni–Co binary hydroxides assembled by whisker-like nanowires for high-performance supercapacitor. Ionics 2015, 21, 1655–1663; https://doi.org/10.1007/s11581-014-1319-5.Search in Google Scholar

41. Li, C., Liu, S. Preparation and characterization of Ni(OH)2 and NiO mesoporous nanosheets. J. Nanomater. 2012, 648012, 1–6; https://doi.org/10.1155/2012/648012.Search in Google Scholar

42. Chen, H., Hu, L., Chen, M., Yan, Y., Wu, L. Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 2014, 24, 934–942; https://doi.org/10.1002/adfm.201301747.Search in Google Scholar

43. Mondal, A. K., Su, D., Chen, S., Kretschmer, K., Xie, X., Ahn, H. J., Wang, G. A microwave synthesis of mesoporous NiCo2O4. nanosheets as electrode materials for lithium-ion batteries and supercapacitors. ChemPhysChem 2015, 16, 169–175; https://doi.org/10.1002/cphc.201402654.Search in Google Scholar PubMed

44. Mehdizadeh, R., Saghatforoush, L. A., Sanati, S. Synthesis and characterization of β-Co(OH)2, CuO and ZnO nanostructures by solvothermal method without any additive. J. Chin. Chem. Soc. 2013, 60, 339–344; https://doi.org/10.1002/jccs.201200419.Search in Google Scholar

45. Shinde, M., Qureshi, N., Rane, S., Ahn, C., Kim, T., Amalnerkar, D. Morphological evolution of nanorod to submicron brick-like cobalt oxide structures under microwave solvothermal regime. Sci. Adv. Mater. 2016, 8, 144–148.10.1166/sam.2018.2950Search in Google Scholar

46. Shinde, M., Qureshi, N., Rane, S., Mulik, U., Amalnerkar, D. Synthesis of cobalt oxide nanostructures by microwave assisted solvothermal technique using binary solvent system. Phys. Chem. Commun. 2015, 2, 1–9.Search in Google Scholar

47. Jana, M., Saha, S., Samanta, P., Murmu, N. C., Kim, N. H., Kuila, T., Lee, J. H. Growth of Ni–Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (SILAR) method for high performance asymmetric supercapacitor electrodes. J. Mater. Chem. A 2016, 4, 2188–2197; https://doi.org/10.1039/c5ta10297a.Search in Google Scholar

48. Krishnamoorthy, K., Pazhamalai, P., Mariappan, V. K., Manoharan, S., Kesavan, D., Kim, S-.J. Two-Dimensional siloxene–graphene heterostructure-based high-performance supercapacitor for capturing regenerative braking energy in electric vehicles. Adv. Funct. Mater. 2021, 31, 2008422; https://doi.org/10.1002/adfm.202008422.Search in Google Scholar

49. Krishnamoorthy, K., Pazhamalai, P., Mariappan, V. K., Nardekar, S. S., Sahoo, S., Kim, S. J. Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat. Commun. 2020, 11, 2351; https://doi.org/10.1038/s41467-020-15808-6.Search in Google Scholar PubMed PubMed Central

50. He, X., Suna, B., Gao, B., Pang, A., Suoa, H., Zhao, C. Various micromorphologies and electrochemical properties of polyaniline/carbon cloth composite nanomaterial were induced for supercapacitors. J. Electroanal. Chem. 2017, 792, 88–94; https://doi.org/10.1016/j.jelechem.2017.03.029.Search in Google Scholar

51. Bavio, M. A., Acosta, G. G., Kessler, T., Visintin, A. Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline – carbon nanotubes. Energy 2017, 130, 22–28; https://doi.org/10.1016/j.energy.2017.04.135.Search in Google Scholar

52. Malik, R., Zhang, L., McConnell, C., Schott, M., Hsieh, Y. Y., Noga, R., Alvarez, N. T., Shanov, V. Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon 2017, 116, 579–590; https://doi.org/10.1016/j.carbon.2017.02.036.Search in Google Scholar

53. Bhardwaj, P., Kaushik, S., Gairola, P., Gairola, S. P. Polyaniline enfolded hybrid carbon array substrate electrode for high performance supercapacitors. J. Polym. Eng. 2019, 39, 228–238; https://doi.org/10.1515/polyeng-2018-0292.Search in Google Scholar

54. Zhou, H., Han, G., Xiao, Y., Chang, Y., Zhai, H. J. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J. Power Sources 2014, 263, 259–267; https://doi.org/10.1016/j.jpowsour.2014.04.039.Search in Google Scholar

55. Zhou, H., Han, G. One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors. Electrochim. Acta 2016, 192, 448–455; https://doi.org/10.1016/j.electacta.2016.02.015.Search in Google Scholar

56. Li, K., Feng, S., Jing, C., Chen, Y., Liu, X., Zhang, Y., Zhou, L. Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem. Commun. 2019, 55, 13773–13776; https://doi.org/10.1039/c9cc06791d.Search in Google Scholar

57. Laforgue, A., Simon, P., Sarrazin, C., Fauvarque, J. F. Polythiophene-based supercapacitors. J. Power Sources 1999, 80, 142–148; https://doi.org/10.1016/s0378-7753(98)00258-4.Search in Google Scholar

58. Yu, D., Qian, Q., Wei, L., Jiang, W., Goh, K., Wei, J., Jie, Z., Chen, Y. Emergence of fiber supercapacitors. Chem. Soc. Rev. 2015, 44, 647–662; https://doi.org/10.1039/c4cs00286e.Search in Google Scholar

59. Shown, I., Ganguly, A., Chen, L. C., Chen, K. H. Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 2015, 3, 2–26; https://doi.org/10.1002/ese3.50.Search in Google Scholar

60. Frackowiak, E., Béguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937–950; https://doi.org/10.1016/s0008-6223(00)00183-4.Search in Google Scholar

61. Cao, J., Li, L., Xi, Y., Li, J., Pan, X., Chen, D., Han, W. Core–shell structural PANI-derived carbon@Co–Ni LDH electrode for high-performance asymmetric supercapacitors. Sustain. Energy Fuels 2018, 2, 1350–1355; https://doi.org/10.1039/c8se00123e.Search in Google Scholar

62. Wu, K., Zhao, J., Wu, R., Ruan, B., Liu, H., Wu, M. The impact of Fe3+ doping on the flexible polythiophene electrodes for supercapacitors. J. Electroanal. Chem. 2018, 823, 527–530; https://doi.org/10.1016/j.jelechem.2018.06.052.Search in Google Scholar

63. Naudin, E., Ho, H. A., Branchaud, S., Breau, L., Bélanger, D. Electrochemical polymerization and characterization of poly(3-(4-fluorophenyl)thiophene) in pure ionic liquids. J. Phys. Chem. B 2002, 106, 10585–10595; https://doi.org/10.1021/jp020770s.Search in Google Scholar

64. Pang, Y., Xu, H., Li, X., Ding, H., Cheng, Y., Shi, G., Jin, L. Electrochemical synthesis, characterization, and electrochromic properties of poly(3-chlorothiophene) and its copolymer with 3-methylthiophene in a room temperature ionic liquid. Electrochem. Commun. 2006, 8, 1757–1763; https://doi.org/10.1016/j.elecom.2006.08.007.Search in Google Scholar

65. Ryu, W. H., Kim, Y. S., Kim, J. H., Cheong, I. W. Direct synthetic route for water-dispersible polythiophene nanoparticles via surfactant-free oxidative polymerization. Polymer 2014, 55, 806–812; https://doi.org/10.1016/j.polymer.2013.12.056.Search in Google Scholar

66. Khan, R. U. A., Martineau, P. M., Cann, B. L., Newton, Mark. E., Dhillon, H. K., Daniel, J. Twitchen color alterations in CVD synthetic diamond with heat and UV exposure: implications for color grading and identification. Gems Gemol. 2010, 46, 18–26; https://doi.org/10.5741/gems.46.1.18.Search in Google Scholar

67. Li, Q., Li, Y., Peng, H., Cui, X., Zhou, M., Feng, K., Xiao, P. Layered NH4CoxNi1−xPO4_H2O (0 < x < 1) nanostructures finely tuned by Co/Ni molar ratios for asymmetric supercapacitor electrodes. J. Mater. Sci. 2016, 51, 9946–9957; https://doi.org/10.1007/s10853-016-0151-x.Search in Google Scholar

68. Christy, A. J. Novel combustion method to prepare octahedral NiO nanoparticles and its photocatalytic activity. Mater. Res. Bull 2013, 48, 4248–4254; https://doi.org/10.1016/j.materresbull.2013.06.072.Search in Google Scholar

69. Ahamed, P., Yousuf, M. A. Tissue matrices scaf-fold for the preparation of lithium cobalt oxide. Adv. Mater. Phys. Chem. 2020, 10, 111–124; https://doi.org/10.4236/ampc.2020.105009.Search in Google Scholar

Received: 2021-02-15
Accepted: 2021-10-25
Published Online: 2021-12-10
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0049/html
Scroll to top button