Startseite Dynamic crystallization behavior of PA-12/PP-MWCNT nanocomposites: non-isothermal kinetics approach
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dynamic crystallization behavior of PA-12/PP-MWCNT nanocomposites: non-isothermal kinetics approach

  • Sucharita Sethy , Saroj Kumar Samantaray und Bhabani K. Satapathy EMAIL logo
Veröffentlicht/Copyright: 10. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The effect of multi-walled carbon nanotubes (MWCNT) loading on the crystallization behavior of matrix polyamide 12 (PA-12), in PA-12/polypropylene-MWCNT (PP-MWCNT)-based nanocomposites were analyzed for their non-isothermal crystallization behavior at various cooling rates of 2.5–20 °C/min in differential scanning calorimetry (DSC). Several kinetic models such as Jeziorny (modified-Avrami), Mo and Tobin models were employed to analyze the crystallization behavioral trend with respect to time and temperature of the nanocomposites. The crystallization rate increased half-time of crystallization with MWCNT content as estimated from the Jeziorny theory. The linear agreement between Jeziorny model and experimental relative crystallinity outperforms the Tobin analysis where the coefficient of linear regression was found to be considerably trailing behind and off the satisfactory mark. The Mo model accounts for the percentage crystallinity and thereby successfully explained the crystallization behavior of PA-12 where the kinetic parameters increased with crystallinity indicating higher cooling rate for higher crystallinity. The MWCNT induced crystallization (nucleation activity) values were close to zero irrespective of MWCNT loading which reiterates the enhanced crystallization (rate) of PA-12 in the nanocomposites. Estimations based on Friedman approach showed inter-relationship between activation energy and crystallinity where the later was found to be governed by major (matrix) PA-12 phase.


Corresponding author: Bhabani K. Satapathy, Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Li, J., Fang, Z., Tong, L., Gu, A., Liu, F. Effect of multi-walled carbon nanotubes on non-isothermal crystallization kinetics of polyamide 6. Eur. Polym. J. 2006, 42, 3230–3235; https://doi.org/10.1016/j.eurpolymj.2006.08.018.Suche in Google Scholar

2. Wu, D., Zhang, Y., Zhang, M., Yu, W. Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromolecules 2009, 10, 417–424; https://doi.org/10.1021/bm801183f.Suche in Google Scholar

3. Laredo, E., Grimau, M., Bello, A., Wu, D. F., Zhang, Y. S., Lin, D. P. AC conductivity of selectively located carbon nanotubes in poly(ε-caprolactone)/polylactide blend nanocomposites. Biomacromolecules 2010, 11, 1339–1347; https://doi.org/10.1021/bm100135n.Suche in Google Scholar

4. Gonzalez-Montiel, A., Keskkula, H., Paul, D. R. Impact-modified nylon 6/polypropylene relationships. Polymer (Guildf.) 1995, 36, 4587–4603; https://doi.org/10.1016/0032-3861(95)96828-v.Suche in Google Scholar

5. Okada, O., Keskkula, H., Paul, D. R. Nylon 6 as a modifier for maleated ethylene-propylene elastomers. Polymer (Guildf.) 1999, 40, 2699–2709; https://doi.org/10.1016/s0032-3861(98)00497-2.Suche in Google Scholar

6. Campoy, I., Arribas, J. M., Zaporta, M. A. M., Marco, C., Gómez, M. A., Fatou, J. G. Crystallization kinetics of polypropylene-polyamide compatibilized blends. Eur. Polym. J. 1995, 31, 475–480; https://doi.org/10.1016/0014-3057(94)00185-5.Suche in Google Scholar

7. Seo, M. K., Lee, J. R., Park, S. J. Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multi-walled carbon nanotubes. Mater. Sci. Eng. A 2005, 404, 79–84; https://doi.org/10.1016/j.msea.2005.05.065.Suche in Google Scholar

8. Layachi, A., Frihi, D., Satha, H., Seguela, R., Gherib, S. Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites. J. Therm. Anal. Calorim. 2016, 124, 1319–1329; https://doi.org/10.1007/s10973-016-5286-0.Suche in Google Scholar

9. Sattari, M., Mirsalehi, S. A., Khavandi, A., Alizadeh, O., Naimi-Jamal, M. R. Non-isothermal melting and crystallization behavior of UHMWPE/SCF/nano-SiO2 hybrid composites. J. Therm. Anal. Calorim. 2015, 122, 1319–1330; https://doi.org/10.1007/s10973-015-5003-4.Suche in Google Scholar

10. Huang, J. W., Chang, C. C., Kang, C. C., Yeh, M. Y. Crystallization kinetics and nucleation parameters of nylon 6 and poly(ethylene-co-glycidyl methacrylate) blend. Thermochim. Acta 2008, 468, 66–74; https://doi.org/10.1016/j.tca.2007.12.001.Suche in Google Scholar

11. Valentini, L., Biagiotti, J., Kenny, J. M., López Manchado, M. A. Physical and mechanical behavior of single-walled carbon nanotube/polypropylene/ethylene-propylene-diene rubber nanocomposites. J. Appl. Polym. Sci. 2003, 89, 2657–2663; https://doi.org/10.1002/app.12319.Suche in Google Scholar

12. Chen, E. C., Wu, T. Z. Isothermal and nonisothermal crystallization kinetics of nylon 6/functionalized multi-walled carbon nanotube composites. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 158–169; https://doi.org/10.1002/polb.21351.Suche in Google Scholar

13. Fereidoon, A., Ahangari, M. G., Saedodin, S. A DSC study on the nonisothermal crystallization kinetics of polypropylene/single-walled carbon nanotube nanocomposite. Polym. Plast. Technol. Eng. 2009, 48, 579–586; https://doi.org/10.1080/03602550902824408.Suche in Google Scholar

14. Ahmad, I. A., Kim, H. K., Deveci, S., Kumar, R. V. Non-isothermal crystallisation kinetics of carbon black-graphene-based multimodal-polyethylene nanocomposites. Nanomaterials 2019, 9, 19–24; https://doi.org/10.3390/nano9010110.Suche in Google Scholar

15. McFerran, N. L., Armstrong, C. G., McNally, T. Nonisothermal and isothermal crystallization kinetics of nylon-12. J. Appl. Polym. Sci. 2008, 110, 1043–1058; https://doi.org/10.1002/app.28696.Suche in Google Scholar

16. Liu, S., Yu, Y., Cui, Y., Zhang, H., Mo, Z. Isothermal and non-isothermal crystallization kinetics of nylon-11. J. Appl. Polym. Sci. 1998, 70, 2371–2380. https://doi.org/10.1002/(sici)1097-4628(19981219)70:12<2371::aid-app9>3.0.co;2-4.10.1002/(SICI)1097-4628(19981219)70:12<2371::AID-APP9>3.0.CO;2-4Suche in Google Scholar

17. Sethy, S., Satapathy, B. K. Microstructural interpretations on thermo-mechanical relaxation and electrical conductivity of polyamide-12/polypropylene-MWCNT nanocomposites. J. Polym. Res. 2020, 27, 1–2; https://doi.org/10.1007/s10965-020-02045-0.Suche in Google Scholar

18. Fatou, J., Marco, C., Mandelkern, L. The influence of molecular weight on the regime crystallization of linear polyethylene. Polymer (Guildf.) 1990, 31, 1685–1693; https://doi.org/10.1016/0032-3861(90)90186-3.Suche in Google Scholar

19. Fava, R. A. Methods of Experimental Physics; Academic Press: New York, NY, 1980.Suche in Google Scholar

20. Balamurugan, G. P., Maiti, S. N. Nonisothermal crystallization kinetics of polyamide 6 and ethylene-co-butyl acrylate blends. J. Appl. Polym. Sci. 2008, 107, 2414–2435; https://doi.org/10.1002/app.27377.Suche in Google Scholar

21. Samantaray, S. K., Satapathy, B. K. On the crystal growth kinetics of ultra-toughened biobased polyamide 410: new insights on dynamic crystallization. J. Appl. Polym. Sci. 2021, 51494, 1–19.10.1002/app.51494Suche in Google Scholar

22. Shi, J., Yang, X., Wang, X., Lu, L. Non-isothermal crystallization kinetics of nylon 6/attapulgite nanocomposites. Polym. Test. 2010, 29, 596–602; https://doi.org/10.1016/j.polymertesting.2010.03.007.Suche in Google Scholar

23. Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer (Guildf.) 1978, 19, 1142–1144; https://doi.org/10.1016/0032-3861(78)90060-5.Suche in Google Scholar

24. Ozawa, T. Kinetics of non-isothermal crystallization. Polymer (Guildf.) 1971, 12, 150–158; https://doi.org/10.1016/0032-3861(71)90041-3.Suche in Google Scholar

25. Liu, T., Mo, Z., Zhang, H. Crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J. Appl. Polym. Sci. 1998, 67, 815–821; https://doi.org/10.1002/(sici)1097-4628(19980131)67:5<815::aid-app6>3.0.co;2-w.10.1002/(SICI)1097-4628(19980131)67:5<815::AID-APP6>3.0.CO;2-WSuche in Google Scholar

26. Şanlı, S., Durmus, A., Ercan, N. Effect of nucleating agent on the nonisothermal crystallization kinetics of glass fiber‐and mineral‐filled polyamide‐6 composites. J. Appl. Polym. Sci. 2012, 125, E268–E281.10.1002/app.36231Suche in Google Scholar

27. Tobin, M. C. Theory of phase transition kinetics with growth site impingement. I. Homogeneous nucleation. J. Polym. Sci. Polym. Phys. Ed. 1974, 12, 399–406; https://doi.org/10.1002/pol.1974.180120212.Suche in Google Scholar

28. Tobin, M. C. The theory of phase transition kinetics with growth site impingement. II. Heterogeneous nucleation. J. Polym. Sci. Polym. Phys. Ed. 1976, 14, 2253–2257; https://doi.org/10.1002/pol.1976.180141210.Suche in Google Scholar

29. Tobin, M. C. Theory of phase transition kinetics with growth site impingement. III. Mixed heterogeneous–homogeneous nucleation and nonintegral exponents of the time. J. Polym. Sci. Polym. Phys. Ed. 1977, 15, 2269–2270; https://doi.org/10.1002/pol.1977.180151217.Suche in Google Scholar

30. Rinawa, K., Maiti, S. N., Sonnier, R., Lopez Cuesta, J. M. Non-isothermal crystallization kinetics and thermal behaviour of PA12/SEBS-g-MA blends. Bull. Mater. Sci. 2015, 38, 1315–1327; https://doi.org/10.1007/s12034-015-1016-7.Suche in Google Scholar

31. Vyazovkin, S., Sbirrazzuoli, N. Isoconversional approach to evaluating the Hoffman-Lauritzen parameters (U* and Kg) from the overall rates of nonisothermal crystallization Macromol. Rapid Commun. 2004, 25, 733–738; https://doi.org/10.1002/marc.200300295.Suche in Google Scholar

32. Vyazovkin, S., Sbirrazzuoli, N. Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J. Phys. Chem. B 2003, 107, 882–888; https://doi.org/10.1021/jp026592k.Suche in Google Scholar

33. Friedman, H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 2007, 6, 183–195; https://doi.org/10.1002/polc.5070060121.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2021-0195).


Received: 2021-07-13
Accepted: 2021-10-24
Published Online: 2021-12-10
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0195/html
Button zum nach oben scrollen