Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films
Abstract
The main objective of this study was to assess the effectiveness of TiO2-Al2O3 nano-mixture used as filler in improving packaging films performance. Polylactic acid/titanium dioxide (PLA/TiO2), polylactic acid/alumina (PLA/Al2O3) and polylactic acid/TiO2-Al2O3 (PLA/TiO2-Al2O3) nanocomposite films were successfully prepared via melt mixing process and thoroughly characterized by FTIR spectroscopy, X-ray diffraction (XRD), UV–vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The properties such as heat resistant, barrier, mechanical and antimicrobial properties, required for food packaging have also been investigated. As compared to the neat PLA film, the developed PLA nanocomposites have displayed superior properties particularly the PLA/ TiO2-Al2O3 nanocomposite film. This resulted material has showed a 22 °C increase in its thermal stability versus 14 and 2 °C in the cases of PLA/TiO2 and PLA/Al2O3 respectively, and a 54% reduction of its water vapor permeability in comparison with 47% for PLA/TiO2 and 39% for PLA/Al2O3. In addition, the PLA/TiO2-Al2O3 had a significant enhancement of its mechanical properties. Its Young modulus increased by 102% unlike 23.60% for the PLA/TiO2 and 44.66% for the PLA/Al2O3. It was also noticed that this nanocomposite film demonstrated stronger antibacterial activity than the two others. The bacterial growth inhibition effect of TiO2-Al2O3 nano-mixture against Pseudomonas aeruginosa and Escherichia coli bacteria was more effective than that of its two constituents.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Enescu, D., Cerqueira, M. A., Fucinos, P., Pastrana, L. M. Food Chem. Toxicol. 2019, 35, 110814–110838; https://doi.org/10.1016/j.fct.2019.110814.Suche in Google Scholar PubMed
2. Kurek, M., Ščetar, M., Voilley, A., Galić, K., Debeaufort, F. J. Membr. Sci. 2012, 403–404, 162–168; https://doi.org/10.1016/j.memsci.2012.02.037.Suche in Google Scholar
3. Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., Coma, V. Compr. Rev. Food Sci. F 2018, 17, 165–199; https://doi.org/10.1111/1541-4337.12322.Suche in Google Scholar PubMed
4. Ahmed, J., Mulla, M. Z., Arfat, Y. A. Food Contr. 2016, 69, 196–204; https://doi.org/10.1016/j.foodcont.2016.05.013.Suche in Google Scholar
5. Mihindukulasuriya, S. D. F., Lim, L. T. Trends Food Sci. Technol. 2014, 40, 149–167; https://doi.org/10.1016/j.tifs.2014.09.009.Suche in Google Scholar
6. Honarvar, Z., Hadian, Z., Mashayekh, M. Electron. Physician 2016, 8, 2531–2538; https://doi.org/10.19082/2531.Suche in Google Scholar PubMed PubMed Central
7. Swaroop, C., Shukla, M. Compos. Part A-Appl. S 2019, 124, 105482–105491; https://doi.org/10.1016/j.compositesa.2019.105482.Suche in Google Scholar
8. Garcia, C. V., Shin, G. H., Kim, J. T. Trends Food Sci. Technol. 2018, 82, 21–31; https://doi.org/10.1016/j.tifs.2018.09.021.Suche in Google Scholar
9. Majid, I., Nayik, G. A., Dar, S. M., Nanda, V. J. Saudi Soc. Agric. Sci. 2018, 17, 454–462; https://doi.org/10.1016/j.jssas.2016.11.003.Suche in Google Scholar
10. Thakur, V. K., Thakur, M. K. Carbohydr. Polym. 2014, 109, 102–117; https://doi.org/10.1016/j.carbpol.2014.03.039.Suche in Google Scholar PubMed
11. Thakur, V. K., Thakur, M. K., Gupta, R. K. Int. J. Polym. Anal. Char. 2014, 19, 256–271; https://doi.org/10.1080/1023666x.2014.880016.Suche in Google Scholar
12. Thakur, V. K., Thakur, M. K. Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain. Chem. Eng. 2014, 2, 2637–2652; https://doi.org/10.1021/sc500634p.Suche in Google Scholar
13. Pappu, A., Patil, V., Jain, S., Mahindrakar, A., Haque, R., Thakur, V. K. Int. J. Biol. Macromol. 2015, 79, 449–458; https://doi.org/10.1016/j.ijbiomac.2015.05.013.Suche in Google Scholar
14. Gupta, A. P., Kumar, V. Eur. Polym. J. 2007, 43, 4053–4074; https://doi.org/10.1016/j.eurpolymj.2007.06.045.Suche in Google Scholar
15. Lim, L. T., Auras, R., Rubino, M. Prog. Polym. Sci. 2008, 33, 820–852; https://doi.org/10.1016/j.progpolymsci.2008.05.004.Suche in Google Scholar
16. Lunt, J. Polym. Degrad. Stabil. 1998, 59, 145–152; https://doi.org/10.1016/s0141-3910(97)00148-1.Suche in Google Scholar
17. Farah, S., Anderson, D. G., Langer, R. Adv. Drug Deliv. Rev. 2016, 107, 367–392; https://doi.org/10.1016/j.addr.2016.06.012.Suche in Google Scholar
18. Garlotta, D. J. Polym. Environ. 2001, 9, 63–84; https://doi.org/10.1023/a:1020200822435.10.1023/A:1020200822435Suche in Google Scholar
19. Conn, R. E., Kolstad, J. J., Borzelleca, J. F., Dixler, D. S., Filer, L. J., Ladu, B. N., Pariza, M. W. Food Chem. Toxicol. 1995, 33, 273–356 1995; https://doi.org/10.1016/0278-6915(94)00145-e.Suche in Google Scholar
20. Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., Filho, R. M. Biotechnol. Adv. 2012, 30, 321–328; https://doi.org/10.1016/j.biotechadv.2011.06.019.Suche in Google Scholar PubMed
21. Rasal, R. M., Janorkar, A. V., Hirt, D. E. Prog. Polym. Sci. 2010, 35, 338–356; https://doi.org/10.1016/j.progpolymsci.2009.12.003.Suche in Google Scholar
22. Jamshidian, M., Tehrany, E. A., Imran, M., Akhtar, M. J., Cleymand, F., Desobry, S. J. Food Eng. 2012, 110, 380–389; https://doi.org/10.1016/j.jfoodeng.2011.12.034.Suche in Google Scholar
23. Jonoobi, M., Harun, J., Mathew, A. P., Oksman, K. Compos. Sci. Technol. 2010, 70, 1742–1747; https://doi.org/10.1016/j.compscitech.2010.07.005.Suche in Google Scholar
24. Benhacine, F., Hadj-Hamou, A. S., Habi, A., Grohens, Y. Int. Polym. Process. 2015, 30, 511–521; https://doi.org/10.3139/217.3087.Suche in Google Scholar
25. Fortunati, E., Rinaldi, S., Peltzer, M., Bloise, N., Visai, L., Armentano, I., Jiménezc, A., Latterini, L., Kenny, J. M. Carbohydr. Polym. 2014, 101, 1122–1133; https://doi.org/10.1016/j.carbpol.2013.10.055.Suche in Google Scholar PubMed
26. Gao, Y., Picot, O. T., Bilotti, E., Peijs, T. Eur. Polym. J. 2017, 86, 117–131; https://doi.org/10.1016/j.eurpolymj.2016.10.045.Suche in Google Scholar
27. Therias, S., Larche, J. F., Bussiere, P. O., Gardette, J. L., Murariu, M., Dubois, P. Biomacromolecules 2012, 13, 3283–3291; https://doi.org/10.1021/bm301071w.Suche in Google Scholar PubMed
28. Marra, A., Silvestre, C., Duraccio, D., Cimmino, S. Int. J. Biol. Macromol. 2016, 88, 254–262; https://doi.org/10.1016/j.ijbiomac.2016.03.039.Suche in Google Scholar PubMed
29. Youssef, A. M., El-Sayed, S. M. Carbohydr. Polym. 2018, 193, 19–27; https://doi.org/10.1016/j.carbpol.2018.03.088.Suche in Google Scholar PubMed
30. Zaidi, L., Kaci, M., Bruzaud, S., Bourmaud, A., Grohens, Y. Polym. Degrad. Stabil. 2010, 95, 1751–1758; https://doi.org/10.1016/j.polymdegradstab.2010.05.014.Suche in Google Scholar
31. Djalila, A., Serier, A. J. Macromol. Sci. 2018, 55, 11–16; https://doi.org/10.1080/10601325.2017.1387482.Suche in Google Scholar
32. Bezrodna, T., Puchkovska, G., Shimanovska, V., Chashecnikova, I., Khalyavka, T., Baran, J. Appl. Surf. Sci. 2003, 214, 222–231; https://doi.org/10.1016/s0169-4332(03)00346-5.Suche in Google Scholar
33. Li, G. S., Li, L. P., Boerio-Goates, J., Woodfield, B. F. J. Am. Chem. Soc. 2005, 127, 8659–8666; https://doi.org/10.1021/ja050517g.Suche in Google Scholar PubMed
34. Zhang, W., Li, C., Li, R. Nanosci. Nanotechnol. Asia 2015, 5, 8–14.10.2174/2210681205666150611191945Suche in Google Scholar
35. Li, Q., Su, H. J., Tan, T. W. Biochem. Eng. J. 2008, 38, 212–218; https://doi.org/10.1016/j.bej.2007.07.007.Suche in Google Scholar
36. Gravereau, P. Introduction à la pratique de la diffraction des rayons X par les poudres.3rd cycle. Diffraction des rayons X par les poudres. Université Bordeaux 2011, 1, 209. France.Suche in Google Scholar
37. Auras, R., Lim, L. T., Selke, S. E. M., Tsuji, H. Poly (lactic acid): synthesis, structures, properties, processing, and applications; John Wiley & Sons: New Jersey, 2010.10.1002/9780470649848Suche in Google Scholar
38. Ahmed, J., Arfat, Y. A., Castro-Aguirre, E., Auras, R. Int. J. Biol. Macromol. 2016, 86, 885–892; https://doi.org/10.1016/j.ijbiomac.2016.02.034.Suche in Google Scholar PubMed
39. Jayaramudu, J., Das, K., Sonakshi, M., Siva Mohan Reddy, G., Aderibigbe, B., Sadiku, R., Sinha Ray, S. Int. J. Biol. Macromol. 2014, 64, 428–434; https://doi.org/10.1016/j.ijbiomac.2013.12.034.Suche in Google Scholar PubMed
40. Xu, J., Li, L., Yan, Y., Wang, H., Wang, X., Fu, X., Li, G. J. Colloid Interface Sci. 2008, 318, 29–34; https://doi.org/10.1016/j.jcis.2007.10.004.Suche in Google Scholar PubMed
41. Luo, Y., Wang, X., Wang, C., Hu, Y., Liu, M. Ceram. Inter. 2018, 44, 10412–10419; https://doi.org/10.1016/j.ceramint.2018.03.057.Suche in Google Scholar
42. Kriven, W. M. Mater. Res. Soc. Symp. Proc. 2002, 702, U8.3.1–U8.3.7. https://doi:10.1557/proc-702-u8.3.1.10.1557/PROC-702-U8.3.1Suche in Google Scholar
43. Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., Dubois, P. Eur. Polym. J. 2013, 49, 3471–3482; https://doi.org/10.1016/j.eurpolymj.2013.08.005.Suche in Google Scholar
44. Buzarovska, A. Polym. Plast. Technol. Eng. 2013, 52, 280–286; https://doi.org/10.1080/03602559.2012.751411.Suche in Google Scholar
45. Zhang, H., Huang, J., Yang, L., Chen, R., Zou, W., Lin, X., Qu, J. RSC Adv. 2015, 5, 4639–4647; https://doi.org/10.1039/c4ra14538k.Suche in Google Scholar
46. Yeh, J. T., Chai, W. L., Wu, C. S. Polym. Plast. Technol. Eng. 2008, 47, 887–894; https://doi.org/10.1080/03602550802189076.Suche in Google Scholar
47. Luo, Y. B., Li, W. D., Wang, X., Xu, D. Y., Wang, Y. Z. Acta Mater. 2009, 57, 3182–3191; https://doi.org/10.1016/j.actamat.2009.03.022.Suche in Google Scholar
48. Wang, W. W., Man, C. Z., Zhang, C. M., Jiang, L., Dan, Y., Nguyen, T. P. Polym. Degrad. Stabil. 2013, 98, 885–893; https://doi.org/10.1016/j.polymdegradstab.2013.01.003.Suche in Google Scholar
49. Buzarovska, A., Grozdanov, A. J. Appl. Polym. Sci. 2012, 123, 2187–2193; https://doi.org/10.1002/app.34729.Suche in Google Scholar
50. Fukushima, K., Tabuani, D., Camino, G. Mater. Sci. Eng. C 2009, 29, 1433–1441; https://doi.org/10.1016/j.msec.2008.11.005.Suche in Google Scholar
51. Kopinke, F. D., Remmler, M., Mackenzie, K., Moder, M., Wachsen, O. Polym. Degrad. Stabil. 1996, 53, 329–342; https://doi.org/10.1016/0141-3910(96)00102-4.Suche in Google Scholar
52. Fei, P., Fei, B., Yu, Y., Xiong, H., Tan, J. J. Appl. Polym. Sci. 2014, 131, 39846–39856; https://doi.org/10.1002/app.39846.Suche in Google Scholar
53. Remili, C., Kaci, M., Benhamida, A., Bruzaud, S., Grohens, Y. Polym. Degrad. Stabil. 2011, 96, 1489–1496; https://doi.org/10.1016/j.polymdegradstab.2011.05.005.Suche in Google Scholar
54. Drieskens, M., Peeters, R., Mullens, J., Franco, D., Lemstra, P. J., Hristova-Bogaerds, D. G. J. Polym. Sci. Pol. Phys. 2009, 47, 2247–2258; https://doi.org/10.1002/polb.21822.Suche in Google Scholar
55. Roilo, D., Maestri, C. A., Scarpa, M., Bettotti, P., Checchetto, R. Surf. Coating. Technol. 2018, 343, 131–137; https://doi.org/10.1016/j.surfcoat.2017.10.015.Suche in Google Scholar
56. El-Wakil, N. A., Hassan, E. A., Abou-Zeid, R. E., Dufresne, A. Carbohydr. Polym. 2015, 124, 337–346; https://doi.org/10.1016/j.carbpol.2015.01.076.Suche in Google Scholar
57. Baek, N., Kim, Y. T., Marcy, J. E., Duncan, S. E., O’Keefe, S. F. Food Packag. Shelf 2018, 17, 30–38; https://doi.org/10.1016/j.fpsl.2018.05.004.Suche in Google Scholar
58. Bouakaz, B. S., Pillin, I., Habi, A., Grohens, Y. Appl. Clay Sci. 2015, 116, 69–77; https://doi.org/10.1016/j.clay.2015.08.017.Suche in Google Scholar
59. Matsunaga, T., Tomoda, R., Nakajima, T., Nakamura, N., Komine, T. Appl. Environ. Microbiol. 1988, 54, 1330–1333; https://doi.org/10.1128/aem.54.6.1330-1333.1988.Suche in Google Scholar
60. Gelover, S., Gómez, L. A., Reyes, K., Leal, M. T. Water Res. 2006, 40, 3274–3280; https://doi.org/10.1016/j.watres.2006.07.006.Suche in Google Scholar
61. Saito, T., Iwase, T., Horie, J., Morioka, T. J. Photoc. Photobio. B 1992, 14, 369–379; https://doi.org/10.1016/1011-1344(92)85115-b.Suche in Google Scholar
62. Załęska-Radziwiłł, M., Doskocz, N. Desalin. Water Treat. 2015, 57, 1573–1581.10.1080/19443994.2014.996015Suche in Google Scholar
63. Doskocz, N., Affek, K., Załęska-Radziwiłł, M. E3S Web Conferences 2018, 44, 00033; https://doi.org/10.1051/e3sconf/20184400033.Suche in Google Scholar
64. Jiang, W., Mashayekhi, H., Xing, B. Environ. Pollut. 2009, 157, 1619–1625; https://doi.org/10.1016/j.envpol.2008.12.025.Suche in Google Scholar PubMed
65. Balasubramanyam, A., Sailaja, N., Mahboob, M., Rahman, M. F., Hussain, S. M., Grover, P. Toxicol. Vitro 2010, 24, 1871–1876; https://doi.org/10.1016/j.tiv.2010.07.004.Suche in Google Scholar PubMed
66. Sadiq, I. M., Pakrashi, S., Chandrasekaran, N., Mukherjee, A. J. Nanopart. Res. 2011, 13, 3287–3299; https://doi.org/10.1007/s11051-011-0243-0.Suche in Google Scholar
67. Lian, Z., Zhang, Y., Zhao, Y. Innov. Food Sci. Emerg. Technol. 2016, 33, 145–153; https://doi.org/10.1016/j.ifset.2015.10.008.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Compatibility of energetic plasticizers with the triblock copolymer of polypropylene glycol-glycidyl azide polymer-polypropylene glycol (PPG-GAP-PPG)
- Simultaneous improvement of mechanical and conductive properties of poly(amide-imide) composites using carbon nano-materials with different morphologies
- Thermal and mechanical behavior of SBR/devulcanized waste tire rubber blends using mechano–chemical and microwave methods
- Preparation and assembly
- Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer
- Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater
- Zn(II)-selective poly (vinyl chloride) (PVC) membrane electrode based on Schiff base ligand 2-benzoylpyridine semicarbazone as an ionophore
- Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films
- Boron nitride nanoplatelets as two-dimensional thermal fillers in epoxy composites: new scenarios at very low filler loadings
- Engineering and processing
- Study on bubble morphology at interface of laser direct joint between carbon fiber reinforced thermoplastic (CFRTP) and titanium alloy
- Robust parameter search for IC tray injection molding using regrind resin
Artikel in diesem Heft
- Frontmatter
- Material properties
- Compatibility of energetic plasticizers with the triblock copolymer of polypropylene glycol-glycidyl azide polymer-polypropylene glycol (PPG-GAP-PPG)
- Simultaneous improvement of mechanical and conductive properties of poly(amide-imide) composites using carbon nano-materials with different morphologies
- Thermal and mechanical behavior of SBR/devulcanized waste tire rubber blends using mechano–chemical and microwave methods
- Preparation and assembly
- Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer
- Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater
- Zn(II)-selective poly (vinyl chloride) (PVC) membrane electrode based on Schiff base ligand 2-benzoylpyridine semicarbazone as an ionophore
- Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films
- Boron nitride nanoplatelets as two-dimensional thermal fillers in epoxy composites: new scenarios at very low filler loadings
- Engineering and processing
- Study on bubble morphology at interface of laser direct joint between carbon fiber reinforced thermoplastic (CFRTP) and titanium alloy
- Robust parameter search for IC tray injection molding using regrind resin