Startseite Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films

  • Fatima Zohra Yakdoumi und Assia Siham Hadj-Hamou EMAIL logo
Veröffentlicht/Copyright: 22. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The main objective of this study was to assess the effectiveness of TiO2-Al2O3 nano-mixture used as filler in improving packaging films performance. Polylactic acid/titanium dioxide (PLA/TiO2), polylactic acid/alumina (PLA/Al2O3) and polylactic acid/TiO2-Al2O3 (PLA/TiO2-Al2O3) nanocomposite films were successfully prepared via melt mixing process and thoroughly characterized by FTIR spectroscopy, X-ray diffraction (XRD), UV–vis spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The properties such as heat resistant, barrier, mechanical and antimicrobial properties, required for food packaging have also been investigated. As compared to the neat PLA film, the developed PLA nanocomposites have displayed superior properties particularly the PLA/ TiO2-Al2O3 nanocomposite film. This resulted material has showed a 22 °C increase in its thermal stability versus 14 and 2 °C in the cases of PLA/TiO2 and PLA/Al2O3 respectively, and a 54% reduction of its water vapor permeability in comparison with 47% for PLA/TiO2 and 39% for PLA/Al2O3. In addition, the PLA/TiO2-Al2O3 had a significant enhancement of its mechanical properties. Its Young modulus increased by 102% unlike 23.60% for the PLA/TiO2 and 44.66% for the PLA/Al2O3. It was also noticed that this nanocomposite film demonstrated stronger antibacterial activity than the two others. The bacterial growth inhibition effect of TiO2-Al2O3 nano-mixture against Pseudomonas aeruginosa and Escherichia coli bacteria was more effective than that of its two constituents.


Corresponding author: Assia Siham Hadj-Hamou, Laboratoire des Matériaux Polymères, Département de Chimie Macromoléculaire, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El Alia, Alger 16111, Algeria, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Enescu, D., Cerqueira, M. A., Fucinos, P., Pastrana, L. M. Food Chem. Toxicol. 2019, 35, 110814–110838; https://doi.org/10.1016/j.fct.2019.110814.Suche in Google Scholar PubMed

2. Kurek, M., Ščetar, M., Voilley, A., Galić, K., Debeaufort, F. J. Membr. Sci. 2012, 403–404, 162–168; https://doi.org/10.1016/j.memsci.2012.02.037.Suche in Google Scholar

3. Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., Coma, V. Compr. Rev. Food Sci. F 2018, 17, 165–199; https://doi.org/10.1111/1541-4337.12322.Suche in Google Scholar PubMed

4. Ahmed, J., Mulla, M. Z., Arfat, Y. A. Food Contr. 2016, 69, 196–204; https://doi.org/10.1016/j.foodcont.2016.05.013.Suche in Google Scholar

5. Mihindukulasuriya, S. D. F., Lim, L. T. Trends Food Sci. Technol. 2014, 40, 149–167; https://doi.org/10.1016/j.tifs.2014.09.009.Suche in Google Scholar

6. Honarvar, Z., Hadian, Z., Mashayekh, M. Electron. Physician 2016, 8, 2531–2538; https://doi.org/10.19082/2531.Suche in Google Scholar PubMed PubMed Central

7. Swaroop, C., Shukla, M. Compos. Part A-Appl. S 2019, 124, 105482–105491; https://doi.org/10.1016/j.compositesa.2019.105482.Suche in Google Scholar

8. Garcia, C. V., Shin, G. H., Kim, J. T. Trends Food Sci. Technol. 2018, 82, 21–31; https://doi.org/10.1016/j.tifs.2018.09.021.Suche in Google Scholar

9. Majid, I., Nayik, G. A., Dar, S. M., Nanda, V. J. Saudi Soc. Agric. Sci. 2018, 17, 454–462; https://doi.org/10.1016/j.jssas.2016.11.003.Suche in Google Scholar

10. Thakur, V. K., Thakur, M. K. Carbohydr. Polym. 2014, 109, 102–117; https://doi.org/10.1016/j.carbpol.2014.03.039.Suche in Google Scholar PubMed

11. Thakur, V. K., Thakur, M. K., Gupta, R. K. Int. J. Polym. Anal. Char. 2014, 19, 256–271; https://doi.org/10.1080/1023666x.2014.880016.Suche in Google Scholar

12. Thakur, V. K., Thakur, M. K. Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain. Chem. Eng. 2014, 2, 2637–2652; https://doi.org/10.1021/sc500634p.Suche in Google Scholar

13. Pappu, A., Patil, V., Jain, S., Mahindrakar, A., Haque, R., Thakur, V. K. Int. J. Biol. Macromol. 2015, 79, 449–458; https://doi.org/10.1016/j.ijbiomac.2015.05.013.Suche in Google Scholar

14. Gupta, A. P., Kumar, V. Eur. Polym. J. 2007, 43, 4053–4074; https://doi.org/10.1016/j.eurpolymj.2007.06.045.Suche in Google Scholar

15. Lim, L. T., Auras, R., Rubino, M. Prog. Polym. Sci. 2008, 33, 820–852; https://doi.org/10.1016/j.progpolymsci.2008.05.004.Suche in Google Scholar

16. Lunt, J. Polym. Degrad. Stabil. 1998, 59, 145–152; https://doi.org/10.1016/s0141-3910(97)00148-1.Suche in Google Scholar

17. Farah, S., Anderson, D. G., Langer, R. Adv. Drug Deliv. Rev. 2016, 107, 367–392; https://doi.org/10.1016/j.addr.2016.06.012.Suche in Google Scholar

18. Garlotta, D. J. Polym. Environ. 2001, 9, 63–84; https://doi.org/10.1023/a:1020200822435.10.1023/A:1020200822435Suche in Google Scholar

19. Conn, R. E., Kolstad, J. J., Borzelleca, J. F., Dixler, D. S., Filer, L. J., Ladu, B. N., Pariza, M. W. Food Chem. Toxicol. 1995, 33, 273–356 1995; https://doi.org/10.1016/0278-6915(94)00145-e.Suche in Google Scholar

20. Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., Filho, R. M. Biotechnol. Adv. 2012, 30, 321–328; https://doi.org/10.1016/j.biotechadv.2011.06.019.Suche in Google Scholar PubMed

21. Rasal, R. M., Janorkar, A. V., Hirt, D. E. Prog. Polym. Sci. 2010, 35, 338–356; https://doi.org/10.1016/j.progpolymsci.2009.12.003.Suche in Google Scholar

22. Jamshidian, M., Tehrany, E. A., Imran, M., Akhtar, M. J., Cleymand, F., Desobry, S. J. Food Eng. 2012, 110, 380–389; https://doi.org/10.1016/j.jfoodeng.2011.12.034.Suche in Google Scholar

23. Jonoobi, M., Harun, J., Mathew, A. P., Oksman, K. Compos. Sci. Technol. 2010, 70, 1742–1747; https://doi.org/10.1016/j.compscitech.2010.07.005.Suche in Google Scholar

24. Benhacine, F., Hadj-Hamou, A. S., Habi, A., Grohens, Y. Int. Polym. Process. 2015, 30, 511–521; https://doi.org/10.3139/217.3087.Suche in Google Scholar

25. Fortunati, E., Rinaldi, S., Peltzer, M., Bloise, N., Visai, L., Armentano, I., Jiménezc, A., Latterini, L., Kenny, J. M. Carbohydr. Polym. 2014, 101, 1122–1133; https://doi.org/10.1016/j.carbpol.2013.10.055.Suche in Google Scholar PubMed

26. Gao, Y., Picot, O. T., Bilotti, E., Peijs, T. Eur. Polym. J. 2017, 86, 117–131; https://doi.org/10.1016/j.eurpolymj.2016.10.045.Suche in Google Scholar

27. Therias, S., Larche, J. F., Bussiere, P. O., Gardette, J. L., Murariu, M., Dubois, P. Biomacromolecules 2012, 13, 3283–3291; https://doi.org/10.1021/bm301071w.Suche in Google Scholar PubMed

28. Marra, A., Silvestre, C., Duraccio, D., Cimmino, S. Int. J. Biol. Macromol. 2016, 88, 254–262; https://doi.org/10.1016/j.ijbiomac.2016.03.039.Suche in Google Scholar PubMed

29. Youssef, A. M., El-Sayed, S. M. Carbohydr. Polym. 2018, 193, 19–27; https://doi.org/10.1016/j.carbpol.2018.03.088.Suche in Google Scholar PubMed

30. Zaidi, L., Kaci, M., Bruzaud, S., Bourmaud, A., Grohens, Y. Polym. Degrad. Stabil. 2010, 95, 1751–1758; https://doi.org/10.1016/j.polymdegradstab.2010.05.014.Suche in Google Scholar

31. Djalila, A., Serier, A. J. Macromol. Sci. 2018, 55, 11–16; https://doi.org/10.1080/10601325.2017.1387482.Suche in Google Scholar

32. Bezrodna, T., Puchkovska, G., Shimanovska, V., Chashecnikova, I., Khalyavka, T., Baran, J. Appl. Surf. Sci. 2003, 214, 222–231; https://doi.org/10.1016/s0169-4332(03)00346-5.Suche in Google Scholar

33. Li, G. S., Li, L. P., Boerio-Goates, J., Woodfield, B. F. J. Am. Chem. Soc. 2005, 127, 8659–8666; https://doi.org/10.1021/ja050517g.Suche in Google Scholar PubMed

34. Zhang, W., Li, C., Li, R. Nanosci. Nanotechnol. Asia 2015, 5, 8–14.10.2174/2210681205666150611191945Suche in Google Scholar

35. Li, Q., Su, H. J., Tan, T. W. Biochem. Eng. J. 2008, 38, 212–218; https://doi.org/10.1016/j.bej.2007.07.007.Suche in Google Scholar

36. Gravereau, P. Introduction à la pratique de la diffraction des rayons X par les poudres.3rd cycle. Diffraction des rayons X par les poudres. Université Bordeaux 2011, 1, 209. France.Suche in Google Scholar

37. Auras, R., Lim, L. T., Selke, S. E. M., Tsuji, H. Poly (lactic acid): synthesis, structures, properties, processing, and applications; John Wiley & Sons: New Jersey, 2010.10.1002/9780470649848Suche in Google Scholar

38. Ahmed, J., Arfat, Y. A., Castro-Aguirre, E., Auras, R. Int. J. Biol. Macromol. 2016, 86, 885–892; https://doi.org/10.1016/j.ijbiomac.2016.02.034.Suche in Google Scholar PubMed

39. Jayaramudu, J., Das, K., Sonakshi, M., Siva Mohan Reddy, G., Aderibigbe, B., Sadiku, R., Sinha Ray, S. Int. J. Biol. Macromol. 2014, 64, 428–434; https://doi.org/10.1016/j.ijbiomac.2013.12.034.Suche in Google Scholar PubMed

40. Xu, J., Li, L., Yan, Y., Wang, H., Wang, X., Fu, X., Li, G. J. Colloid Interface Sci. 2008, 318, 29–34; https://doi.org/10.1016/j.jcis.2007.10.004.Suche in Google Scholar PubMed

41. Luo, Y., Wang, X., Wang, C., Hu, Y., Liu, M. Ceram. Inter. 2018, 44, 10412–10419; https://doi.org/10.1016/j.ceramint.2018.03.057.Suche in Google Scholar

42. Kriven, W. M. Mater. Res. Soc. Symp. Proc. 2002, 702, U8.3.1–U8.3.7. https://doi:10.1557/proc-702-u8.3.1.10.1557/PROC-702-U8.3.1Suche in Google Scholar

43. Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., Dubois, P. Eur. Polym. J. 2013, 49, 3471–3482; https://doi.org/10.1016/j.eurpolymj.2013.08.005.Suche in Google Scholar

44. Buzarovska, A. Polym. Plast. Technol. Eng. 2013, 52, 280–286; https://doi.org/10.1080/03602559.2012.751411.Suche in Google Scholar

45. Zhang, H., Huang, J., Yang, L., Chen, R., Zou, W., Lin, X., Qu, J. RSC Adv. 2015, 5, 4639–4647; https://doi.org/10.1039/c4ra14538k.Suche in Google Scholar

46. Yeh, J. T., Chai, W. L., Wu, C. S. Polym. Plast. Technol. Eng. 2008, 47, 887–894; https://doi.org/10.1080/03602550802189076.Suche in Google Scholar

47. Luo, Y. B., Li, W. D., Wang, X., Xu, D. Y., Wang, Y. Z. Acta Mater. 2009, 57, 3182–3191; https://doi.org/10.1016/j.actamat.2009.03.022.Suche in Google Scholar

48. Wang, W. W., Man, C. Z., Zhang, C. M., Jiang, L., Dan, Y., Nguyen, T. P. Polym. Degrad. Stabil. 2013, 98, 885–893; https://doi.org/10.1016/j.polymdegradstab.2013.01.003.Suche in Google Scholar

49. Buzarovska, A., Grozdanov, A. J. Appl. Polym. Sci. 2012, 123, 2187–2193; https://doi.org/10.1002/app.34729.Suche in Google Scholar

50. Fukushima, K., Tabuani, D., Camino, G. Mater. Sci. Eng. C 2009, 29, 1433–1441; https://doi.org/10.1016/j.msec.2008.11.005.Suche in Google Scholar

51. Kopinke, F. D., Remmler, M., Mackenzie, K., Moder, M., Wachsen, O. Polym. Degrad. Stabil. 1996, 53, 329–342; https://doi.org/10.1016/0141-3910(96)00102-4.Suche in Google Scholar

52. Fei, P., Fei, B., Yu, Y., Xiong, H., Tan, J. J. Appl. Polym. Sci. 2014, 131, 39846–39856; https://doi.org/10.1002/app.39846.Suche in Google Scholar

53. Remili, C., Kaci, M., Benhamida, A., Bruzaud, S., Grohens, Y. Polym. Degrad. Stabil. 2011, 96, 1489–1496; https://doi.org/10.1016/j.polymdegradstab.2011.05.005.Suche in Google Scholar

54. Drieskens, M., Peeters, R., Mullens, J., Franco, D., Lemstra, P. J., Hristova-Bogaerds, D. G. J. Polym. Sci. Pol. Phys. 2009, 47, 2247–2258; https://doi.org/10.1002/polb.21822.Suche in Google Scholar

55. Roilo, D., Maestri, C. A., Scarpa, M., Bettotti, P., Checchetto, R. Surf. Coating. Technol. 2018, 343, 131–137; https://doi.org/10.1016/j.surfcoat.2017.10.015.Suche in Google Scholar

56. El-Wakil, N. A., Hassan, E. A., Abou-Zeid, R. E., Dufresne, A. Carbohydr. Polym. 2015, 124, 337–346; https://doi.org/10.1016/j.carbpol.2015.01.076.Suche in Google Scholar

57. Baek, N., Kim, Y. T., Marcy, J. E., Duncan, S. E., O’Keefe, S. F. Food Packag. Shelf 2018, 17, 30–38; https://doi.org/10.1016/j.fpsl.2018.05.004.Suche in Google Scholar

58. Bouakaz, B. S., Pillin, I., Habi, A., Grohens, Y. Appl. Clay Sci. 2015, 116, 69–77; https://doi.org/10.1016/j.clay.2015.08.017.Suche in Google Scholar

59. Matsunaga, T., Tomoda, R., Nakajima, T., Nakamura, N., Komine, T. Appl. Environ. Microbiol. 1988, 54, 1330–1333; https://doi.org/10.1128/aem.54.6.1330-1333.1988.Suche in Google Scholar

60. Gelover, S., Gómez, L. A., Reyes, K., Leal, M. T. Water Res. 2006, 40, 3274–3280; https://doi.org/10.1016/j.watres.2006.07.006.Suche in Google Scholar

61. Saito, T., Iwase, T., Horie, J., Morioka, T. J. Photoc. Photobio. B 1992, 14, 369–379; https://doi.org/10.1016/1011-1344(92)85115-b.Suche in Google Scholar

62. Załęska-Radziwiłł, M., Doskocz, N. Desalin. Water Treat. 2015, 57, 1573–1581.10.1080/19443994.2014.996015Suche in Google Scholar

63. Doskocz, N., Affek, K., Załęska-Radziwiłł, M. E3S Web Conferences 2018, 44, 00033; https://doi.org/10.1051/e3sconf/20184400033.Suche in Google Scholar

64. Jiang, W., Mashayekhi, H., Xing, B. Environ. Pollut. 2009, 157, 1619–1625; https://doi.org/10.1016/j.envpol.2008.12.025.Suche in Google Scholar PubMed

65. Balasubramanyam, A., Sailaja, N., Mahboob, M., Rahman, M. F., Hussain, S. M., Grover, P. Toxicol. Vitro 2010, 24, 1871–1876; https://doi.org/10.1016/j.tiv.2010.07.004.Suche in Google Scholar PubMed

66. Sadiq, I. M., Pakrashi, S., Chandrasekaran, N., Mukherjee, A. J. Nanopart. Res. 2011, 13, 3287–3299; https://doi.org/10.1007/s11051-011-0243-0.Suche in Google Scholar

67. Lian, Z., Zhang, Y., Zhao, Y. Innov. Food Sci. Emerg. Technol. 2016, 33, 145–153; https://doi.org/10.1016/j.ifset.2015.10.008.Suche in Google Scholar

Received: 2020-05-03
Accepted: 2020-08-08
Published Online: 2020-09-22
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0105/html
Button zum nach oben scrollen