Abstract
A new poly (vinyl chloride) (PVC) membrane electrode using 2-benzoylpyridine semicarbazone as membrane carrier with dioctylphthalate as plasticizer and sodium tetraphenylborate (NaTBP) as anion excluder has been fabricated and investigated as Zn(II)-selective electrode. Best potential response is observed for the composition PVC 30%, plasticizer 58%, NaTBP 8% and ionophore 4% (w/w). The sensor showed a linear stable response over a concentration range of 1.0 × 10−2–4.56 × 10−6 M with a detection limit of 2.28 × 10−6 M and a response time <10 s. The electrode can be used for at least six months without any divergence in potential.
Acknowledgments
The authors are grateful to Delhi Technological University for providing the necessary facilities to carry out this work.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Mallya, A. N., Poduval, M. K., Ramamurthy, P. C. Mater. Res. Express 2019, 6, 045101. https://doi.org/10.1088/2053-1591/aaecf1.Search in Google Scholar
2. Suman, S., Singh, R. Microchem. J. 2019, 149, 104045. https://doi.org/10.1016/j.microc.2019.104045.Search in Google Scholar
3. Khan, A. A., Khan, M. Q., Hussain, R. Mater. Res. Express 2017, 4, 095024. https://doi.org/10.1088/2053-1591/aa8920.Search in Google Scholar
4. Abbaspour, A., Mirahmadi, E., Khalafi-nejad, A., Babamohammadi, S. A. J. Hazard. Mater. 2010, 174, 656–661. https://doi.org/10.1016/j.jhazmat.2009.09.101.Search in Google Scholar
5. Aghaie, M., Giahi, M., Aghaie, H., Arvand, M., Pournaghdy, M., Yavari, F. Desalination 2009, 247, 346–354. https://doi.org/10.1016/j.desal.2008.10.007.Search in Google Scholar
6. Aksuner, N., Henden, E., Yilmaz, I., Cukurovali, A. Dyes Pigm. 2009, 83, 211–217. https://doi.org/10.1016/j.dyepig.2009.04.012.Search in Google Scholar
7. Babakhanian, A., Gholivand, M. B., Mohammadi, M., Khodadadian, M., Shockravi, A., Abbaszadeh, M., Ghanbary, A. J. Hazard. Mater. 2010, 177, 159–166. https://doi.org/10.1016/j.jhazmat.2009.12.012.Search in Google Scholar
8. Jain, A. K., Singh, A. K., Mehtab, S., Saxena, P. Anal. Chim. Acta 2005, 551, 45–50. https://doi.org/10.1016/j.aca.2005.07.016.Search in Google Scholar
9. Teng, Y., Singh, C. K., Sadak, O., Ahmad, N., Gunasekaran, S. J. Electroanal. Chem. 2019, 833, 269–274. https://doi.org/10.1016/j.jelechem.2018.12.002.Search in Google Scholar
10. Lua, Y., Lianga, X., Niyungekoa, C., Zhoua, J., Xua, J., Tiana, G. Talanta 2018, 178, 324–338. https://doi.org/10.1016/j.talanta.2017.08.033.Search in Google Scholar
11. Gumpu, M. B., Sethuraman, S., Krishnan, U. M., Rayappan, J. B. B. Sens. Actuators B Chem. 2015, 213, 515–533. https://doi.org/10.1016/j.snb.2015.02.122.Search in Google Scholar
12. Bansod, B. K., Kumar, T., Thakur, R., Rana, S., Singh, I. Biosens. Bioelectron. 2017, 94, 443–455. https://doi.org/10.1016/j.bios.2017.03.031.Search in Google Scholar
13. Fakhari, A. R., Alaghemand, M., Shamsipur, M. Anal. Lett. 2000, 33, 2169–2181. https://doi.org/10.1080/00032710008543181.Search in Google Scholar
14. Hosseini, M., Abkenar, S. D., Ganjali, M. R., Faridbod, F. Mater. Sci. Eng. C 2011, 31, 428–433. https://doi.org/10.1016/j.msec.2010.10.020.Search in Google Scholar
15. Kaur, K., Aulakh, J. S. J. Anal. Chem. 2019, 74, 134–142. https://doi.org/10.1134/s1061934819020084.Search in Google Scholar
16. Shamsipur, M., Rouhani, S., Ganjali, M. R., Eshghi, H., Sharghi, H. Sens. Actuators B Chem. 1999, 59, 30–34. https://doi.org/10.1016/s0925-4005(99)00160-4.Search in Google Scholar
17. Reglinski, J., Morris, S., Stevenson, D. E. Polyhedron 2002, 21, 2175–2182. https://doi.org/10.1016/s0277-5387(02)01172-5.Search in Google Scholar
18. Rana, S., Mittal, S. K., Singh, N., Singh, J., Banks, C. E. Sens. Actuators B Chem. 2017, 239, 17–27. https://doi.org/10.1016/j.snb.2016.07.133.Search in Google Scholar
19. Akkurt, M., Ozturk, S., Ide, S. Anal. Sci. 2000, 16, 667–668. https://doi.org/10.2116/analsci.16.667.Search in Google Scholar
20. Singh, A. K., Jain, A. K., Saxena, P., Mehtab, S. Electroanalysis 2006, 18, 1186–1192. https://doi.org/10.1002/elan.200503495.Search in Google Scholar
21. Gupta, V. K., Agarwal, S., Jakob, A., Lang, H. Sens. Actuators B Chem. 2006, 114, 812–818. https://doi.org/10.1016/j.snb.2005.07.039.Search in Google Scholar
22. Hassouna, M. E. M., Elsuccary, S. A. A., Graham, J. P. Sens. Actuators B Chem. 2010, 146, 79–90. https://doi.org/10.1016/j.snb.2010.02.012.Search in Google Scholar
23. Perez-Rebolledoa, A., Pirob, O. E., Castellanoc, E. E., Teixeirad, L. R., Batistad, A. A., Beraldo, H. J. Mol. Struct. 2006, 794, 18–23. https://doi.org/10.1016/j.molstruc.2006.01.032.Search in Google Scholar
24. Kamata, S., Murata, H., Kubo, Y., Bhale, A. Analyst 1989, 114, 1029–1031. https://doi.org/10.1039/an9891401029.Search in Google Scholar
25. Suman, S., Singh, R. J. Polym. Eng. 2020, 40, 481–485. https://doi.org/10.1515/polyeng-2019-0325.Search in Google Scholar
26. Kamata, S., Bhale, A., Fukunga, Y., Murata, H. Anal. Chem. 1988, 60, 2464–2467. https://doi.org/10.1021/ac00173a006.Search in Google Scholar
27. Chandra, S., Gupta, M. Int. J. Therapeut. Appl. 2016, 33, 33–39. https://doi.org/10.20530/ijta_33_33-39.Search in Google Scholar
28. Fakhari, A. R., Shamsipur, M., Ghanbari, K. Anal. Chim. Acta 2002, 460, 177–183. https://doi.org/10.1016/s0003-2670(02)00200-3.Search in Google Scholar
29. Mizani, F., Ziaeiha, M. Int. J. Electrochem. Sci. 2012, 7, 7770–7783.Search in Google Scholar
30. Javanbakht, M., Ganjali, M. R., Eshghi, H., Sharghi, H., Shamsipur, M. Electroanalysis 1999, 11, 81–84. https://doi.org/10.1002/(sici)1521-4109(199902)11:2%3c;81::aid-elan81%3e;3.0.co;2-q.10.1002/(SICI)1521-4109(199902)11:2<81::AID-ELAN81>3.0.CO;2-QSearch in Google Scholar
31. Shamsipur, M., Yousefi, M., Gangali, M. R. Anal. Chem. 2000, 72, 2391–2394. https://doi.org/10.1021/ac991155w.Search in Google Scholar
32. Shamsipur, M., Rouhani, S., Sharghi, H., Ganjali, M. R., Eshghi, H. Anal. Chem. 1999, 71, 4938–4943. https://doi.org/10.1021/ac990167e.Search in Google Scholar
33. Rosatzin, T., Bakker, E., Suzuki, K., Simon, W. Anal. Chim. Acta 1993, 280, 197–208. https://doi.org/10.1016/0003-2670(93)85122-z.Search in Google Scholar
34. Huser, M., Gehring, P. M., Morf, W. E., Simon, W., Lindner, E., Jeney, J., Toth, K., Pungor, E. Anal. Chem. 1991, 63, 1380–1386. https://doi.org/10.1021/ac00014a009.Search in Google Scholar
35. Christian, G. D. Analyst 1994, 119, 2309–2314. https://doi.org/10.1039/an9941902309.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Compatibility of energetic plasticizers with the triblock copolymer of polypropylene glycol-glycidyl azide polymer-polypropylene glycol (PPG-GAP-PPG)
- Simultaneous improvement of mechanical and conductive properties of poly(amide-imide) composites using carbon nano-materials with different morphologies
- Thermal and mechanical behavior of SBR/devulcanized waste tire rubber blends using mechano–chemical and microwave methods
- Preparation and assembly
- Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer
- Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater
- Zn(II)-selective poly (vinyl chloride) (PVC) membrane electrode based on Schiff base ligand 2-benzoylpyridine semicarbazone as an ionophore
- Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films
- Boron nitride nanoplatelets as two-dimensional thermal fillers in epoxy composites: new scenarios at very low filler loadings
- Engineering and processing
- Study on bubble morphology at interface of laser direct joint between carbon fiber reinforced thermoplastic (CFRTP) and titanium alloy
- Robust parameter search for IC tray injection molding using regrind resin
Articles in the same Issue
- Frontmatter
- Material properties
- Compatibility of energetic plasticizers with the triblock copolymer of polypropylene glycol-glycidyl azide polymer-polypropylene glycol (PPG-GAP-PPG)
- Simultaneous improvement of mechanical and conductive properties of poly(amide-imide) composites using carbon nano-materials with different morphologies
- Thermal and mechanical behavior of SBR/devulcanized waste tire rubber blends using mechano–chemical and microwave methods
- Preparation and assembly
- Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer
- Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater
- Zn(II)-selective poly (vinyl chloride) (PVC) membrane electrode based on Schiff base ligand 2-benzoylpyridine semicarbazone as an ionophore
- Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films
- Boron nitride nanoplatelets as two-dimensional thermal fillers in epoxy composites: new scenarios at very low filler loadings
- Engineering and processing
- Study on bubble morphology at interface of laser direct joint between carbon fiber reinforced thermoplastic (CFRTP) and titanium alloy
- Robust parameter search for IC tray injection molding using regrind resin