Home Zn(II)-selective poly (vinyl chloride) (PVC) membrane electrode based on Schiff base ligand 2-benzoylpyridine semicarbazone as an ionophore
Article
Licensed
Unlicensed Requires Authentication

Zn(II)-selective poly (vinyl chloride) (PVC) membrane electrode based on Schiff base ligand 2-benzoylpyridine semicarbazone as an ionophore

  • Shankar Suman and Ram Singh EMAIL logo
Published/Copyright: September 23, 2020
Become an author with De Gruyter Brill

Abstract

A new poly (vinyl chloride) (PVC) membrane electrode using 2-benzoylpyridine semicarbazone as membrane carrier with dioctylphthalate as plasticizer and sodium tetraphenylborate (NaTBP) as anion excluder has been fabricated and investigated as Zn(II)-selective electrode. Best potential response is observed for the composition PVC 30%, plasticizer 58%, NaTBP 8% and ionophore 4% (w/w). The sensor showed a linear stable response over a concentration range of 1.0 × 10−2–4.56 × 10−6 M with a detection limit of 2.28 × 10−6 M and a response time <10 s. The electrode can be used for at least six months without any divergence in potential.


Corresponding author: Ram Singh, Department of Applied Chemistry, Delhi Technological University, 110042 Delhi, India, E-mail:

Acknowledgments

The authors are grateful to Delhi Technological University for providing the necessary facilities to carry out this work.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Mallya, A. N., Poduval, M. K., Ramamurthy, P. C. Mater. Res. Express 2019, 6, 045101. https://doi.org/10.1088/2053-1591/aaecf1.Search in Google Scholar

2. Suman, S., Singh, R. Microchem. J. 2019, 149, 104045. https://doi.org/10.1016/j.microc.2019.104045.Search in Google Scholar

3. Khan, A. A., Khan, M. Q., Hussain, R. Mater. Res. Express 2017, 4, 095024. https://doi.org/10.1088/2053-1591/aa8920.Search in Google Scholar

4. Abbaspour, A., Mirahmadi, E., Khalafi-nejad, A., Babamohammadi, S. A. J. Hazard. Mater. 2010, 174, 656–661. https://doi.org/10.1016/j.jhazmat.2009.09.101.Search in Google Scholar

5. Aghaie, M., Giahi, M., Aghaie, H., Arvand, M., Pournaghdy, M., Yavari, F. Desalination 2009, 247, 346–354. https://doi.org/10.1016/j.desal.2008.10.007.Search in Google Scholar

6. Aksuner, N., Henden, E., Yilmaz, I., Cukurovali, A. Dyes Pigm. 2009, 83, 211–217. https://doi.org/10.1016/j.dyepig.2009.04.012.Search in Google Scholar

7. Babakhanian, A., Gholivand, M. B., Mohammadi, M., Khodadadian, M., Shockravi, A., Abbaszadeh, M., Ghanbary, A. J. Hazard. Mater. 2010, 177, 159–166. https://doi.org/10.1016/j.jhazmat.2009.12.012.Search in Google Scholar

8. Jain, A. K., Singh, A. K., Mehtab, S., Saxena, P. Anal. Chim. Acta 2005, 551, 45–50. https://doi.org/10.1016/j.aca.2005.07.016.Search in Google Scholar

9. Teng, Y., Singh, C. K., Sadak, O., Ahmad, N., Gunasekaran, S. J. Electroanal. Chem. 2019, 833, 269–274. https://doi.org/10.1016/j.jelechem.2018.12.002.Search in Google Scholar

10. Lua, Y., Lianga, X., Niyungekoa, C., Zhoua, J., Xua, J., Tiana, G. Talanta 2018, 178, 324–338. https://doi.org/10.1016/j.talanta.2017.08.033.Search in Google Scholar

11. Gumpu, M. B., Sethuraman, S., Krishnan, U. M., Rayappan, J. B. B. Sens. Actuators B Chem. 2015, 213, 515–533. https://doi.org/10.1016/j.snb.2015.02.122.Search in Google Scholar

12. Bansod, B. K., Kumar, T., Thakur, R., Rana, S., Singh, I. Biosens. Bioelectron. 2017, 94, 443–455. https://doi.org/10.1016/j.bios.2017.03.031.Search in Google Scholar

13. Fakhari, A. R., Alaghemand, M., Shamsipur, M. Anal. Lett. 2000, 33, 2169–2181. https://doi.org/10.1080/00032710008543181.Search in Google Scholar

14. Hosseini, M., Abkenar, S. D., Ganjali, M. R., Faridbod, F. Mater. Sci. Eng. C 2011, 31, 428–433. https://doi.org/10.1016/j.msec.2010.10.020.Search in Google Scholar

15. Kaur, K., Aulakh, J. S. J. Anal. Chem. 2019, 74, 134–142. https://doi.org/10.1134/s1061934819020084.Search in Google Scholar

16. Shamsipur, M., Rouhani, S., Ganjali, M. R., Eshghi, H., Sharghi, H. Sens. Actuators B Chem. 1999, 59, 30–34. https://doi.org/10.1016/s0925-4005(99)00160-4.Search in Google Scholar

17. Reglinski, J., Morris, S., Stevenson, D. E. Polyhedron 2002, 21, 2175–2182. https://doi.org/10.1016/s0277-5387(02)01172-5.Search in Google Scholar

18. Rana, S., Mittal, S. K., Singh, N., Singh, J., Banks, C. E. Sens. Actuators B Chem. 2017, 239, 17–27. https://doi.org/10.1016/j.snb.2016.07.133.Search in Google Scholar

19. Akkurt, M., Ozturk, S., Ide, S. Anal. Sci. 2000, 16, 667–668. https://doi.org/10.2116/analsci.16.667.Search in Google Scholar

20. Singh, A. K., Jain, A. K., Saxena, P., Mehtab, S. Electroanalysis 2006, 18, 1186–1192. https://doi.org/10.1002/elan.200503495.Search in Google Scholar

21. Gupta, V. K., Agarwal, S., Jakob, A., Lang, H. Sens. Actuators B Chem. 2006, 114, 812–818. https://doi.org/10.1016/j.snb.2005.07.039.Search in Google Scholar

22. Hassouna, M. E. M., Elsuccary, S. A. A., Graham, J. P. Sens. Actuators B Chem. 2010, 146, 79–90. https://doi.org/10.1016/j.snb.2010.02.012.Search in Google Scholar

23. Perez-Rebolledoa, A., Pirob, O. E., Castellanoc, E. E., Teixeirad, L. R., Batistad, A. A., Beraldo, H. J. Mol. Struct. 2006, 794, 18–23. https://doi.org/10.1016/j.molstruc.2006.01.032.Search in Google Scholar

24. Kamata, S., Murata, H., Kubo, Y., Bhale, A. Analyst 1989, 114, 1029–1031. https://doi.org/10.1039/an9891401029.Search in Google Scholar

25. Suman, S., Singh, R. J. Polym. Eng. 2020, 40, 481–485. https://doi.org/10.1515/polyeng-2019-0325.Search in Google Scholar

26. Kamata, S., Bhale, A., Fukunga, Y., Murata, H. Anal. Chem. 1988, 60, 2464–2467. https://doi.org/10.1021/ac00173a006.Search in Google Scholar

27. Chandra, S., Gupta, M. Int. J. Therapeut. Appl. 2016, 33, 33–39. https://doi.org/10.20530/ijta_33_33-39.Search in Google Scholar

28. Fakhari, A. R., Shamsipur, M., Ghanbari, K. Anal. Chim. Acta 2002, 460, 177–183. https://doi.org/10.1016/s0003-2670(02)00200-3.Search in Google Scholar

29. Mizani, F., Ziaeiha, M. Int. J. Electrochem. Sci. 2012, 7, 7770–7783.Search in Google Scholar

30. Javanbakht, M., Ganjali, M. R., Eshghi, H., Sharghi, H., Shamsipur, M. Electroanalysis 1999, 11, 81–84. https://doi.org/10.1002/(sici)1521-4109(199902)11:2%3c;81::aid-elan81%3e;3.0.co;2-q.10.1002/(SICI)1521-4109(199902)11:2<81::AID-ELAN81>3.0.CO;2-QSearch in Google Scholar

31. Shamsipur, M., Yousefi, M., Gangali, M. R. Anal. Chem. 2000, 72, 2391–2394. https://doi.org/10.1021/ac991155w.Search in Google Scholar

32. Shamsipur, M., Rouhani, S., Sharghi, H., Ganjali, M. R., Eshghi, H. Anal. Chem. 1999, 71, 4938–4943. https://doi.org/10.1021/ac990167e.Search in Google Scholar

33. Rosatzin, T., Bakker, E., Suzuki, K., Simon, W. Anal. Chim. Acta 1993, 280, 197–208. https://doi.org/10.1016/0003-2670(93)85122-z.Search in Google Scholar

34. Huser, M., Gehring, P. M., Morf, W. E., Simon, W., Lindner, E., Jeney, J., Toth, K., Pungor, E. Anal. Chem. 1991, 63, 1380–1386. https://doi.org/10.1021/ac00014a009.Search in Google Scholar

35. Christian, G. D. Analyst 1994, 119, 2309–2314. https://doi.org/10.1039/an9941902309.Search in Google Scholar

Received: 2020-03-17
Accepted: 2020-07-21
Published Online: 2020-09-23
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0053/html
Scroll to top button