Startseite Zn(II)-selective poly (vinyl chloride) (PVC) membrane electrode based on Schiff base ligand 2-benzoylpyridine semicarbazone as an ionophore
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Zn(II)-selective poly (vinyl chloride) (PVC) membrane electrode based on Schiff base ligand 2-benzoylpyridine semicarbazone as an ionophore

  • Shankar Suman und Ram Singh EMAIL logo
Veröffentlicht/Copyright: 23. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new poly (vinyl chloride) (PVC) membrane electrode using 2-benzoylpyridine semicarbazone as membrane carrier with dioctylphthalate as plasticizer and sodium tetraphenylborate (NaTBP) as anion excluder has been fabricated and investigated as Zn(II)-selective electrode. Best potential response is observed for the composition PVC 30%, plasticizer 58%, NaTBP 8% and ionophore 4% (w/w). The sensor showed a linear stable response over a concentration range of 1.0 × 10−2–4.56 × 10−6 M with a detection limit of 2.28 × 10−6 M and a response time <10 s. The electrode can be used for at least six months without any divergence in potential.


Corresponding author: Ram Singh, Department of Applied Chemistry, Delhi Technological University, 110042 Delhi, India, E-mail:

Acknowledgments

The authors are grateful to Delhi Technological University for providing the necessary facilities to carry out this work.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Mallya, A. N., Poduval, M. K., Ramamurthy, P. C. Mater. Res. Express 2019, 6, 045101. https://doi.org/10.1088/2053-1591/aaecf1.Suche in Google Scholar

2. Suman, S., Singh, R. Microchem. J. 2019, 149, 104045. https://doi.org/10.1016/j.microc.2019.104045.Suche in Google Scholar

3. Khan, A. A., Khan, M. Q., Hussain, R. Mater. Res. Express 2017, 4, 095024. https://doi.org/10.1088/2053-1591/aa8920.Suche in Google Scholar

4. Abbaspour, A., Mirahmadi, E., Khalafi-nejad, A., Babamohammadi, S. A. J. Hazard. Mater. 2010, 174, 656–661. https://doi.org/10.1016/j.jhazmat.2009.09.101.Suche in Google Scholar

5. Aghaie, M., Giahi, M., Aghaie, H., Arvand, M., Pournaghdy, M., Yavari, F. Desalination 2009, 247, 346–354. https://doi.org/10.1016/j.desal.2008.10.007.Suche in Google Scholar

6. Aksuner, N., Henden, E., Yilmaz, I., Cukurovali, A. Dyes Pigm. 2009, 83, 211–217. https://doi.org/10.1016/j.dyepig.2009.04.012.Suche in Google Scholar

7. Babakhanian, A., Gholivand, M. B., Mohammadi, M., Khodadadian, M., Shockravi, A., Abbaszadeh, M., Ghanbary, A. J. Hazard. Mater. 2010, 177, 159–166. https://doi.org/10.1016/j.jhazmat.2009.12.012.Suche in Google Scholar

8. Jain, A. K., Singh, A. K., Mehtab, S., Saxena, P. Anal. Chim. Acta 2005, 551, 45–50. https://doi.org/10.1016/j.aca.2005.07.016.Suche in Google Scholar

9. Teng, Y., Singh, C. K., Sadak, O., Ahmad, N., Gunasekaran, S. J. Electroanal. Chem. 2019, 833, 269–274. https://doi.org/10.1016/j.jelechem.2018.12.002.Suche in Google Scholar

10. Lua, Y., Lianga, X., Niyungekoa, C., Zhoua, J., Xua, J., Tiana, G. Talanta 2018, 178, 324–338. https://doi.org/10.1016/j.talanta.2017.08.033.Suche in Google Scholar

11. Gumpu, M. B., Sethuraman, S., Krishnan, U. M., Rayappan, J. B. B. Sens. Actuators B Chem. 2015, 213, 515–533. https://doi.org/10.1016/j.snb.2015.02.122.Suche in Google Scholar

12. Bansod, B. K., Kumar, T., Thakur, R., Rana, S., Singh, I. Biosens. Bioelectron. 2017, 94, 443–455. https://doi.org/10.1016/j.bios.2017.03.031.Suche in Google Scholar

13. Fakhari, A. R., Alaghemand, M., Shamsipur, M. Anal. Lett. 2000, 33, 2169–2181. https://doi.org/10.1080/00032710008543181.Suche in Google Scholar

14. Hosseini, M., Abkenar, S. D., Ganjali, M. R., Faridbod, F. Mater. Sci. Eng. C 2011, 31, 428–433. https://doi.org/10.1016/j.msec.2010.10.020.Suche in Google Scholar

15. Kaur, K., Aulakh, J. S. J. Anal. Chem. 2019, 74, 134–142. https://doi.org/10.1134/s1061934819020084.Suche in Google Scholar

16. Shamsipur, M., Rouhani, S., Ganjali, M. R., Eshghi, H., Sharghi, H. Sens. Actuators B Chem. 1999, 59, 30–34. https://doi.org/10.1016/s0925-4005(99)00160-4.Suche in Google Scholar

17. Reglinski, J., Morris, S., Stevenson, D. E. Polyhedron 2002, 21, 2175–2182. https://doi.org/10.1016/s0277-5387(02)01172-5.Suche in Google Scholar

18. Rana, S., Mittal, S. K., Singh, N., Singh, J., Banks, C. E. Sens. Actuators B Chem. 2017, 239, 17–27. https://doi.org/10.1016/j.snb.2016.07.133.Suche in Google Scholar

19. Akkurt, M., Ozturk, S., Ide, S. Anal. Sci. 2000, 16, 667–668. https://doi.org/10.2116/analsci.16.667.Suche in Google Scholar

20. Singh, A. K., Jain, A. K., Saxena, P., Mehtab, S. Electroanalysis 2006, 18, 1186–1192. https://doi.org/10.1002/elan.200503495.Suche in Google Scholar

21. Gupta, V. K., Agarwal, S., Jakob, A., Lang, H. Sens. Actuators B Chem. 2006, 114, 812–818. https://doi.org/10.1016/j.snb.2005.07.039.Suche in Google Scholar

22. Hassouna, M. E. M., Elsuccary, S. A. A., Graham, J. P. Sens. Actuators B Chem. 2010, 146, 79–90. https://doi.org/10.1016/j.snb.2010.02.012.Suche in Google Scholar

23. Perez-Rebolledoa, A., Pirob, O. E., Castellanoc, E. E., Teixeirad, L. R., Batistad, A. A., Beraldo, H. J. Mol. Struct. 2006, 794, 18–23. https://doi.org/10.1016/j.molstruc.2006.01.032.Suche in Google Scholar

24. Kamata, S., Murata, H., Kubo, Y., Bhale, A. Analyst 1989, 114, 1029–1031. https://doi.org/10.1039/an9891401029.Suche in Google Scholar

25. Suman, S., Singh, R. J. Polym. Eng. 2020, 40, 481–485. https://doi.org/10.1515/polyeng-2019-0325.Suche in Google Scholar

26. Kamata, S., Bhale, A., Fukunga, Y., Murata, H. Anal. Chem. 1988, 60, 2464–2467. https://doi.org/10.1021/ac00173a006.Suche in Google Scholar

27. Chandra, S., Gupta, M. Int. J. Therapeut. Appl. 2016, 33, 33–39. https://doi.org/10.20530/ijta_33_33-39.Suche in Google Scholar

28. Fakhari, A. R., Shamsipur, M., Ghanbari, K. Anal. Chim. Acta 2002, 460, 177–183. https://doi.org/10.1016/s0003-2670(02)00200-3.Suche in Google Scholar

29. Mizani, F., Ziaeiha, M. Int. J. Electrochem. Sci. 2012, 7, 7770–7783.Suche in Google Scholar

30. Javanbakht, M., Ganjali, M. R., Eshghi, H., Sharghi, H., Shamsipur, M. Electroanalysis 1999, 11, 81–84. https://doi.org/10.1002/(sici)1521-4109(199902)11:2%3c;81::aid-elan81%3e;3.0.co;2-q.10.1002/(SICI)1521-4109(199902)11:2<81::AID-ELAN81>3.0.CO;2-QSuche in Google Scholar

31. Shamsipur, M., Yousefi, M., Gangali, M. R. Anal. Chem. 2000, 72, 2391–2394. https://doi.org/10.1021/ac991155w.Suche in Google Scholar

32. Shamsipur, M., Rouhani, S., Sharghi, H., Ganjali, M. R., Eshghi, H. Anal. Chem. 1999, 71, 4938–4943. https://doi.org/10.1021/ac990167e.Suche in Google Scholar

33. Rosatzin, T., Bakker, E., Suzuki, K., Simon, W. Anal. Chim. Acta 1993, 280, 197–208. https://doi.org/10.1016/0003-2670(93)85122-z.Suche in Google Scholar

34. Huser, M., Gehring, P. M., Morf, W. E., Simon, W., Lindner, E., Jeney, J., Toth, K., Pungor, E. Anal. Chem. 1991, 63, 1380–1386. https://doi.org/10.1021/ac00014a009.Suche in Google Scholar

35. Christian, G. D. Analyst 1994, 119, 2309–2314. https://doi.org/10.1039/an9941902309.Suche in Google Scholar

Received: 2020-03-17
Accepted: 2020-07-21
Published Online: 2020-09-23
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0053/html
Button zum nach oben scrollen