Startseite Robust parameter search for IC tray injection molding using regrind resin
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Robust parameter search for IC tray injection molding using regrind resin

  • Ming-Shyan Huang EMAIL logo und Shih-Chih Nian
Veröffentlicht/Copyright: 15. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Quality consistency is essential in maximizing the productivity rate of the injection molding process and minimizing the production cost. The quality consistency problem is particularly acute in the case of injection molding processes performed using regrind resin, for which the rheological properties are less uniform and more unpredictable than those of virgin material. Accordingly, the present study proposes a two-stage approach for optimizing the injection molding process parameters in such a way as to achieve a consistent molding quality over repeated injection molding cycles. In the first stage, the values of the injection speed/pressure, velocity-to-pressure (V/P) switchover point, and packing pressure are individually determined based on an inspection of the cavity pressure profile and machine parameters provided by the injection molding machine controller. In the second stage, a robust parametric search method based on a first-order regression model is employed to determine the optimal combination of the process parameter settings. Using an Integrated Circuit (IC) tray fabricated from regrind resin for illustration purposes, the results confirm that the proposed method overcomes the problem of small variations in the melt quality and therefore provides an effective technique for improving the yield rate and quality of the continuous mass production.


Corresponding author: Ming-Shyan Huang, Department of Mechatronics Engineering, National Kaohsiung University of Science and Technology, 1 University Road, Yanchao Dist., 824 Kaohsiung City, Taiwan, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Nian, S. C., Wu, C. Y., Huang, M. S. Int. Commun. Heat Mass Transf. 2015, 61, 102–110. https://doi.org/10.1016/j.icheatmasstransfer.2014.12.008.Suche in Google Scholar

2. Nian, S. C., Li, M. H., Huang, M. S. Int. J. Heat Mass Transf. 2015, 86, 358–368. https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.027.Suche in Google Scholar

3. Kazmer, D., Barkan, P. Polym. Eng. Sci. 1997, 37, 1865–1879. https://doi.org/10.1002/pen.11837.Suche in Google Scholar

4. Nian, S. C., Fang, Y. C., Huang, M. S. Polymers 2019, 11, 1348–1362. https://doi.org/10.3390/polym11081348.Suche in Google Scholar PubMed PubMed Central

5. Hamad, K., Kaseem, M., Deri, F. Polym. Degrad. Stabil. 2013, 98, 2801–2812. https://doi.org/10.1016/j.polymdegradstab.2013.09.025.Suche in Google Scholar

6. Yoshida, T., Ishiaku, U. S., Okumura, H., Baba, S., Hamada, H. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2300–2306. https://doi.org/10.1016/j.compositesa.2006.02.019.Suche in Google Scholar

7. Gu, F., Hall, P., Miles, N. J. J. Clean. Prod. 2016, 115, 343–353. https://doi.org/10.1016/j.jclepro.2015.12.062.Suche in Google Scholar

8. Gu, F., Hall, P., Miles, N. J. J. Clean. Prod. 2016, 137, 632–643. https://doi.org/10.1016/j.jclepro.2016.07.028.Suche in Google Scholar

9. Khademi, F., Ma, Y., Ayranci, C., Choi, K., Duke, K. Polym. Eng. Sci. 2016, 56, 1283–1290. https://doi.org/10.1002/pen.24363.Suche in Google Scholar

10. Boronat, J., Segui, V. J., Peydro, M. A., Reig, M. J. J. Mater. Process. Technol. 2009, 209, 2735–2745. https://doi.org/10.1016/j.jmatprotec.2008.06.013.Suche in Google Scholar

11. Zuidema, H., Peters, G. W. M., Meijer, H. E. H. J. Appl. Polym. Sci. 2001, 82, 1170–1186. https://doi.org/10.1002/app.1951.Suche in Google Scholar

12. van der Beek, M. H. E., Peters, G. W. M., Meijer, H. E. H. Int. Polym. Process. 2005, 20, 111–120. https://doi.org/10.3139/217.1872.Suche in Google Scholar

13. van der Beek, M. H. E., Peters, G. W. M., Meijer, H. E. H. Macromol. Mater. Eng. 2005, 290, 443–455. https://doi.org/10.1002/mame.200500027.Suche in Google Scholar

14. Wang, J., Mao, Q. Adv. Polym. Technol. 2013, 32, E474−E485. https://doi.org/10.1002/adv.21294.Suche in Google Scholar

15. Min, B. H. J. Mater. Process. Technol. 2003, 136, 1–6. https://doi.org/10.1016/S0924-0136(02)00445-4.Suche in Google Scholar

16. Chen, Z., Turng, L. S. Polym. Eng. Sci. 2007, 47, 852–862. https://doi.org/10.1002/pen.20769.Suche in Google Scholar

17. Michaeli, W., Schreiber, A. Adv. Polym. Technol. 2009, 28, 65–76. https://doi.org/10.1002/adv.20153.Suche in Google Scholar

18. Hopmann, C., Reßmann, A. Self-optimizing in injection molding and the problem at compensating viscosity fluctuations. in Proceedings of the SPE/ANTEC 2014, Las Vegas, NV, USA, 2014, 2, 1706–1710.Suche in Google Scholar

19. Zhang, J. F., Zhao, P., Zhao, Y., Huang, J. Y., Xia, N., Fu, J. Z. Sens. Actuator A Phys. 2019, 285, 118–126. https://doi.org/10.1016/j.sna.2018.11.009.Suche in Google Scholar

20. Gornik, C. Mater. Sci. Forum 2008, 591–593, 174–178. https://doi.org/10.4028/www.scientific.net/msf.591-593.174.Suche in Google Scholar

21. Kurt, M., Saban, K. O., Kaynak, Y., Atakok, G., Girit, O. Mater. Des. 2009, 30, 3217–3224. https://doi.org/10.1016/j.matdes.2009.01.004.Suche in Google Scholar

22. Wang, J., Xie, P., Ding, Y., Yang, W. Polym. Test. 2009, 28, 228–234. https://doi.org/10.1016/j.polymertesting.2008.09.003.Suche in Google Scholar

23. Xie, P. C., Wang, X. H., Wu, T., Ding, Y. M., Yang, W. M. Int. Polym. Process. 2014, 29, 184–190. https://doi.org/10.3139/217.2683.Suche in Google Scholar

24. Gao, R. X., Tang, X., Gordon, G., Kazmer, D. O. CIRP Ann. Manuf. Technol. 2014, 63, 493–496. https://doi.org/10.1016/j.cirp.2014.03.041.Suche in Google Scholar

25. Gordon, G., Kazmer, D. O., Tang, X., Fan, Z., Gao, R. X. Int. J. Adv. Manuf. Technol. 2015, 78, 1381–1391. https://doi.org/10.1007/s00170-014-6706-6.Suche in Google Scholar

26. Lin, C. C., Wang, W. T., Kuo, C. C., Wuet, C. L. Int. J. Mech. Mechatron. Eng. 2014, 8, 687–691.10.1023/A:1026086712672Suche in Google Scholar

27. Zhao, P., Zhou, H., He, Y., Cai, K., Fu, J. Int. J. Adv. Manuf. Technol. 2014, 72, 765–777. https://doi.org/10.1007/s00170-014-5711-0.Suche in Google Scholar

28. Huang, M. S., Nian, S. C., Chen, J. Y., Lin, C. Y. Precis. Eng. 2018, 51, 647–658. https://doi.org/10.1016/j.precisioneng.2017.11.007.Suche in Google Scholar

29. Zhao, P., Zhang, J., Dong, Z., Huang, J., Fu, J., Turng, L. S. Adv. Polym. Technol. 2020, 2020, 1–22. https://doi.org/10.1155/2020/7023616.Suche in Google Scholar

30. Huang, M. S. J. Mater. Process. Technol. 2007, 183, 419–424. https://doi.org/10.1016/j.jmatprotec.2006.10.037.Suche in Google Scholar

31. Huang, M. S., Lin, T. Y. J. Mater. Process. Technol. 2008, 198, 436–444. https://doi.org/10.1016/j.jmatprotec.2007.07.022.Suche in Google Scholar

32. Huang, M. S., Lin, T. Y. Int. J. Heat Mass Transf. 2008, 51, 5828–5837. https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.016.Suche in Google Scholar

33. Govaerts, B., Noël, J. Qual. Reliab. Eng. Int. 2005, 21, 511–512. https://doi.org/10.1002/qre.737.Suche in Google Scholar

Received: 2020-05-01
Accepted: 2020-07-27
Published Online: 2020-09-15
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0097/html
Button zum nach oben scrollen