Startseite Preparation and characterization of chitosan grafted poly(lactic acid) films for biomedical composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and characterization of chitosan grafted poly(lactic acid) films for biomedical composites

  • Tonmoy Debnath , Md. Sazedul Islam EMAIL logo , Sirajul Hoque , Papia Haque und Mohammed Mizanur Rahman
Veröffentlicht/Copyright: 19. März 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Polymer composites offer a great advantage in biomedical field over the traditional materials used like, metal, ceramics, or polymer alone. Polymer composites provide tailor-made facilities to design required physiological and mechanical properties in biomedical products. Poly(lactic acid) (PLA) is a popular aliphatic polyester used in various biomedical products because they have a renewable source and after resorption they enter well into the Krebs cycle of the human body. However, PLA suffers from hydrolysis and subsequent weight loss in aqueous environment. To improve the hydrolytic properties of hydrophobic PLA and to incorporate the biocompatibility from chitosan (CS) into it, in this study CS has been grafted onto PLA film. CS with 78% of degree of deacetylation and viscosity average molecular weight of about 8,31,760 Da was grafted onto hydrolyzed PLA film surface. Kjeldahl analysis confirmed the attachment of CS onto the PLA films. From thermal stability analysis, it was observed that percentage of weight retention at 600°C of the CS-g-PLA was around 15% higher than that of pure PLA. The mechanical properties of final CS-grafted-PLA composites showed more resistance to hydrolytic degradation than that of pure PLA film.

Acknowledgments

The authors acknowledge their affiliated institutions.

  1. Conflict of interest statement: The authors declare they have no conflict of interest.

References

[1] Shikinami Y, Okuno M. Biomaterials 1999, 20, 859–877.10.1016/S0142-9612(98)00241-5Suche in Google Scholar

[2] Mikos AG, Sarakinos G, Vacanti JP, Langer RS, Cima LG. Google Patents. 1996.Suche in Google Scholar

[3] Sipe JD. Ann. NY Acad. Sci. 2002, 961, 1–9.10.1111/j.1749-6632.2002.tb03040.xSuche in Google Scholar

[4] Mow VC, Ratcliffe A, Poole AR. Biomaterials 1992, 13, 67–97.10.1016/0142-9612(92)90001-5Suche in Google Scholar

[5] Yarlagadda PKDV, Chandrasekharan M, Shyan JYM. Bio-med. Mater. Eng. 2005, 15, 159–177.Suche in Google Scholar

[6] Lane NE. Nat. Clin. Pract. Rheumatol. 2006, 2, 562–569.10.1038/ncprheum0298Suche in Google Scholar

[7] Vert M, Li SM, Spenlehauer G, Guerin P. J. Mater. Sci. Mater. Med. 1992, 3, 432–446.10.1007/BF00701240Suche in Google Scholar

[8] Bruder SP, Jaiswal N, Haynesworth SE. J. Cell. Biochem. 1997, 64, 278–294.10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-FSuche in Google Scholar

[9] Garlotta D. J. Polym. Environ. 2001, 9, 63–84.10.1023/A:1020200822435Suche in Google Scholar

[10] Drumright RE, Gruber PR, Henton DE. Adv. Mater. 2000, 12, 1841–1846.10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-ESuche in Google Scholar

[11] Nampoothiri KM, Nair NR, John RP. Bioresour. Technol. 2010, 101, 8493–8501.10.1016/j.biortech.2010.05.092Suche in Google Scholar

[12] Rahman MM, Shahruzzaman M, Islam MS, Khan MN, Haque P.J. Polym. Eng. 2019, 39, 134–142.10.1515/polyeng-2018-0103Suche in Google Scholar

[13] Simionato JI, Villalobos LDG, Bulla MK, Coró FAG, Garcia JC. Acta Sci. Technol. 2014, 36, 693–698.10.4025/actascitechnol.v36i4.24428Suche in Google Scholar

[14] Kumar MNVR. React. Funct. Polym. 2000, 46, 1–27.10.1016/S1381-5148(00)00038-9Suche in Google Scholar

[15] Islam MS, Haque P, Rashid TU, Khan MN, Mallik AK, Khan MNI, Khan M, Rahman MM. J. Mater. Sci. Mater. Med. 2017, 28, 55.10.1007/s10856-017-5859-xSuche in Google Scholar

[16] Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R. Progr. Polym. Sci. 2014, 39, 1644–1667.10.1016/j.progpolymsci.2014.02.008Suche in Google Scholar

[17] Elsawy MA, Kim K-H, Park J-W, Deep A. Renew. Sustain. Energy Rev. 2017, 79, 1346–1352.10.1016/j.rser.2017.05.143Suche in Google Scholar

[18] Rashid TU, Rahman MM, Kabir S, Shamsuddin SM, Khan MA. Polym. Int. 2012, 61, 1302–1308.10.1002/pi.4207Suche in Google Scholar

[19] Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ. Biomacromolecules 2004, 5, 463–473. Macromol. Chem. Phys. 1985, 186, 1671–1677.10.1021/bm0343040Suche in Google Scholar

[20] Domszy JG, Roberts GAF. Macromol. Chem. Phys. 1985, 186, 1671–1677.10.1002/macp.1985.021860815Suche in Google Scholar

[21] Hwang JK, Shin HH. Kor.-Austr. Rheol. J. 2000, 12, 175–179.Suche in Google Scholar

[22] Kasaai MR, Arul J, Charlet GR. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 2591–2598.10.1002/1099-0488(20001001)38:19<2591::AID-POLB110>3.0.CO;2-6Suche in Google Scholar

[23] Xiao X. Polym. Test. 2008, 27, 164–178.10.1016/j.polymertesting.2007.09.010Suche in Google Scholar

[24] Labconco C. A Guide to Kjeldahl Nitrogen Determination Methods and Apparatus. Labconco Corporation: Houston, TX, USA, 1998.Suche in Google Scholar

[25] Brunner E, Ehrlich H, Schupp P, Hedrich R, Hunoldt S, Kammer M, Machill S, Paasch S, Bazhenov VV, Kurek DV. J. Struct. Biol. 2009, 168, 539–547.10.1016/j.jsb.2009.06.018Suche in Google Scholar

[26] Focher B, Naggi A, Torri G, Cosani A, Terbojevich M. Carbohydr. Polym. 1992, 17, 97–102.10.1016/0144-8617(92)90101-USuche in Google Scholar

[27] Paulino AT, Simionato JI, Garcia JC, Nozaki J. Carbohydr. Polym. 2006, 64, 98–103.10.1016/j.carbpol.2005.10.032Suche in Google Scholar

[28] Wu T, Zivanovic S, Draughon FA, Conway WS, Sams CE. J. Agric. Food Chem. 2005, 53, 3888–3894.10.1021/jf048202sSuche in Google Scholar PubMed

[29] Li Q, Dunn ET, Grandmaison EW, Goosen MFA. J. Bioactive Compat. Polym. 1992, 7, 370–397.10.1177/088391159200700406Suche in Google Scholar

[30] Au HT, Pham LN, Vu THT, Park JS. Macromol. Res. 2012, 20, 51–58.10.1007/s13233-012-0010-9Suche in Google Scholar

[31] Xu J, Zhang J, Gao W, Liang H, Wang H, Li J. Mater. Lett. 2009, 63, 658–660.10.1016/j.matlet.2008.12.014Suche in Google Scholar

[32] Zhou ZF, Huang GQ, Xu WB, Ren FM. Exp. Polym. Lett. 2007, 1, 734–739.10.3144/expresspolymlett.2007.101Suche in Google Scholar

[33] Auras R, Harte B, Selke S. Macromol. Biosci. 2004, 4, 835–864.10.1002/mabi.200400043Suche in Google Scholar PubMed

[34] Coates J. Encyclopedia of Analytical Chemistry, Interpretation of infrared spectra, a practical approach. Wiley: Chichester, 2000, 10815–10837.10.1002/9780470027318.a5606Suche in Google Scholar

[35] Jaworska M, Sakurai K, Gaudon P, Guibal E. Polym. Int. 2003, 52, 198–205.10.1002/pi.1159Suche in Google Scholar

[36] Freier T, Koh HS, Kazazian K, Shoichet MS. Biomaterials 2005, 26, 5872–5878.10.1016/j.biomaterials.2005.02.033Suche in Google Scholar

[37] Prashanth KVH, Kittur FS, Tharanathan RN. Carbohydr. Polym. 2002, 50, 27–33.10.1016/S0144-8617(01)00371-XSuche in Google Scholar

[38] Wenling C, Duohui J, Jiamou L, Yandao G, Nanming Z, Xiufang Z. J. Biomater. Appl. 2005, 20, 157–177.10.1177/0885328205049897Suche in Google Scholar

[39] Moore GK, Roberts GAF. Int. J. Biol. Macromol. 1980, 2, 115–116.10.1016/0141-8130(80)90040-9Suche in Google Scholar

Received: 2019-10-14
Accepted: 2020-02-14
Published Online: 2020-03-19
Published in Print: 2020-04-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0312/pdf
Button zum nach oben scrollen