Startseite Effects of selected bleaching agents on the functional and structural properties of orange albedo starch-based bioplastics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of selected bleaching agents on the functional and structural properties of orange albedo starch-based bioplastics

  • Adewale G. Adeniyi ORCID logo , Oluwaseyi D. Saliu ORCID logo EMAIL logo , Joshua O. Ighalo ORCID logo , Adebayo I. Olosho , Deborah T. Bankole , Sefiu O. Amusat und Eniola O. Kelani
Veröffentlicht/Copyright: 27. Dezember 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Recent research has proven that starch offers a wide range of industrial, commercial, and utility applications if they are optimally processed and refined. In this study, the effect of hydrogen peroxide (HP), sodium persulfite, peracetic acid (PAA), and sodium perborate (SPB) bleaching agents on the physiochemical, surface, mechanical, and flow properties were investigated. The various bleached starch bioplastics were characterized using Fourier transform infrared, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis. Hydroxyl and carbonyl (C=O) stretching were seen for HP- and PAA-bleached starch bioplastics at 3285 and 1736 and 3265 and 1698 cm−1, respectively. The C=O band was absent for SPB-treated starch, whereas the C=S band was seen on sodium hyposulfite (SHS)-treated starch. The morphologies of starch were retained with little agglomerations, except for HP-treated starch bioplastics with a morphology change. HP-treated starch had the highest percentage crystallinity (66%) and the highest thermal stability (74% weight loss), whereas PAA-treated starch had the lowest percentage crystallinity (34%) and the lowest thermal stability (88% weight loss). HP- and SHS-bleached starch bioplastics had the best surface, mechanical, and expansion properties.

References

[1] Franklin HC, Yeison MM, Henry LM, Jorgelina P. J. Environ. Chem. Eng. 2017, 5, 4980.10.1016/j.jece.2017.09.034Suche in Google Scholar

[2] Azubuike CP, Okhamafe O. Int. J. Recycl. Org. Waste. Agric. 2012, 1, 9.10.1186/2251-7715-1-9Suche in Google Scholar

[3] Hernandez-Jaimes C, Bello-Perez LA, Vernon-Carter EJ, Alvarez-Ramirez J. Carbohydr. Polym. 2013, 95, 207–213.10.1016/j.carbpol.2013.03.017Suche in Google Scholar PubMed

[4] Yousefhashemi SM, Khosravani A, Yousefi H. Cellulose 2019, 26, 7207–7221.10.1007/s10570-019-02562-2Suche in Google Scholar

[5] Kratchanova M, Pavlova E, Panchev I. Carbohydr. Polym. 2004, 56, 181–185.10.1016/j.carbpol.2004.01.009Suche in Google Scholar

[6] Adeyi O. J. Appl. Sci. Environ. Manage. 2010, 14, 1.Suche in Google Scholar

[7] Junxi L, Qiong S, Yamin Z, Yanbin W. J. Chem. 2016, 2016, 1.Suche in Google Scholar

[8] Acazar-Alay S, Meireies MAA. Food Sci. Technol. 2015, 35, 1.Suche in Google Scholar

[9] Ogundari I, Momodu AS, Famurewa A, Siyanbola W. Energy Environ. 2012, 23, 599–618.10.1260/0958-305X.23.4.599Suche in Google Scholar

[10] Dias ARG, Zavareze ER, Helbig E, Moura FA, Vargas CG, Ciacco CF. Carbohydr. Polym. 2011, 86, 185–191.10.1016/j.carbpol.2011.04.026Suche in Google Scholar

[11] Luengo E, Álvarez I, Raso J. Innov. Food Sci. Emerg. Technol. 2013, 17, 79–84.10.1016/j.ifset.2012.10.005Suche in Google Scholar

[12] Maran JP, Sivakumar V, Thirugnanasambandham K, Sridhar R. Carbohydr. Polym. 2013, 97, 703–709.10.1016/j.carbpol.2013.05.052Suche in Google Scholar PubMed

[13] Boukroufa M, Boutekedjiret C, Petigny L, Rakotomanomana N, Chemat F. Ultrason. Sonochem. 2015, 24, 72–79.10.1016/j.ultsonch.2014.11.015Suche in Google Scholar PubMed

[14] Zanella K, Taranto OP. J. Food Eng. 2015, 166, 111–118.10.1016/j.jfoodeng.2015.05.033Suche in Google Scholar

[15] Hilali S, Fabiano-Tixier AS, Ruiz K, Hejjaj A, Ait Nouh F, Idlimam A, Chemat F. ACS Sustain. Chem. Eng. 2019, 7, 11815–11822.10.1021/acssuschemeng.9b02281Suche in Google Scholar

[16] Fishman ML, Walker PN, Chau HK, Hotchkiss AT. Biomacromolecules 2003, 4, 880–889.10.1021/bm020122eSuche in Google Scholar

[17] Guo X, Han D, Xi H, Rao L, Liao X, Hu X, Wu J. Carbohydr. Polym. 2012, 88, 441–448.10.1016/j.carbpol.2011.12.026Suche in Google Scholar

[18] Prabasari I, Pettolino F, Liao ML, Bacic A. Carbohydr. Polym. 2011, 84, 484–494.10.1016/j.carbpol.2010.12.012Suche in Google Scholar

[19] Yeoh S, Zhang S, Shi J, Langrish T. Chem. Eng. Commun. 2008, 195, 511–520.10.1080/00986440701707479Suche in Google Scholar

[20] Pathak PD, Mandavgane SA, Kulkarni BD. Curr. Sci. 2017, 113, 1–11.Suche in Google Scholar

[21] Biduski B, Silva WMFD, Colusi R, Hala SLME, Lim LT, Dias ARG, Zavareze EDR. Int. J. Biol. Macrmol. 2018, 113, 443–449.10.1016/j.ijbiomac.2018.02.144Suche in Google Scholar

[22] Parmar HS, Kar A. Nutr. Res. 2007, 27, 710–718.10.1016/j.nutres.2007.09.003Suche in Google Scholar

[23] Kuakpetoon D, Wang J. Starch 2001, 53, 211–218.10.1002/1521-379X(200105)53:5<211::AID-STAR211>3.0.CO;2-MSuche in Google Scholar

[24] Biduski B, DaSilva FT, DaSilva WM, El Halal SLM, Pinto VZ, Dias ARG, Zavareze ER. Food Chem. 2017, 214, 53–60.10.1016/j.foodchem.2016.07.039Suche in Google Scholar

[25] Brito VH, Cereda M. Ferm. Food. Latin. Am. 2016, 1, 192–213.Suche in Google Scholar

[26] Agbo IU, Odo GE. Bio-Research 2010, 8, 588–592.10.4314/br.v8i1.62539Suche in Google Scholar

[27] Garrido LH, Schnitzler E, Zortéa ME, de Souza RT, Demiate IM. J. Food Sci. Technol. 2014, 51, 2640–2647.10.1007/s13197-012-0794-9Suche in Google Scholar PubMed PubMed Central

[28] Brito VHS, Cereda MP. Braz. J. Food 2015, 18, 1.10.1590/1981-6723.ED1801Suche in Google Scholar

[29] Tanetrungroj Y, Prachayawarakorn J. Int. J. Biol. Macromol. 2018, 120, 1240–1246.10.1016/j.ijbiomac.2018.08.137Suche in Google Scholar PubMed

[30] Forte TP. Text. Res. J. 2009, 80, 3–11.10.1177/0040517509104542Suche in Google Scholar

[31] Sun Q, Zhu X, Si F, Xiong L. J. Food Sci. Technol. 2015, 52, 375–382.10.1007/s13197-013-0998-7Suche in Google Scholar PubMed PubMed Central

[32] Gumul D, Krystyjan M, Buksa K, Ziobro R, Zięba T. Starch 2013, 66, 190–198.10.1002/star.201300069Suche in Google Scholar

[33] Saber RA, Attia AK, Salem WM. Adv. Pharm. Bull. 2014, 4, 283.Suche in Google Scholar

[34] Zhang YR, Wang XL, Zhao GM, Wang YZ. Carbohydr. Polym. 2012, 87, 2554–2562.10.1016/j.carbpol.2011.11.036Suche in Google Scholar

[35] Zavareze E, Pinto VZ, Klein B, El Halal SLM, Elias MC, Prentice-Hernández C, Dias ARG. Food Chem. 2012, 132, 344–350.10.1016/j.foodchem.2011.10.090Suche in Google Scholar PubMed

Received: 2019-08-10
Accepted: 2019-11-10
Published Online: 2019-12-27
Published in Print: 2020-01-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0263/html
Button zum nach oben scrollen