Startseite Nanocomposite film with green synthesized TiO2 nanoparticles and hydrophobic polydimethylsiloxane polymer: synthesis, characterization, and antibacterial test
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nanocomposite film with green synthesized TiO2 nanoparticles and hydrophobic polydimethylsiloxane polymer: synthesis, characterization, and antibacterial test

  • Naresh Kumar Sethy EMAIL logo , Zeenat Arif , Pradeep Kumar Mishra und Pradeep Kumar
Veröffentlicht/Copyright: 28. Februar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The green synthesis of nanoparticles is of considerable interest because it is eco-friendly, cost-effective, biocompatible, and non-toxic. Split pulse extract was used as a reducing/capping agent for the synthesis of titanium dioxide (TiO2) nanoparticles. Green synthesized nanoparticles were embedded in the polydimethylsiloxane (PDMS) membrane by using a solution casting technique to develop a nanocomposite. This thin film was characterized using Fourier transform infrared spectroscopy, scanning probe microscopy, high-resolution scanning electron microscopy, ultraviolet-visible spectroscopy, and contact angle analysis. The antibacterial property of the TiO2/PDMS nanocomposite was examined, and the results showed excellent antibacterial activity of TiO2/PDMS compared to PDMS without nanoparticles. The nanocomposite film exhibited antibacterial activity against Gram-positive and Gram-negative bacteria in the presence of TiO2 nanoparticles in the polymer. Here, different weight percentages of TiO2 nanoparticles, i.e. 0%, 7%, 10%, and 13%, were loaded on the PDMS surface to enhance its antibacterial activity. The green synthesis of TiO2 nanoparticles embedded in PDMS and their suitability for antibacterial activity are reported for the first time.

Acknowledgments

The authors would like to thank the Sophisticated Laboratory of the Department of Chemical Engineering and Technology and the Central Instrument Facility Center (CIFC), Indian Institute of Technology (BHU), Varanasi, for providing instrumental facilities.

  1. Research funding: Naresh Kumar Sethy would like to thank the Ministry of Human Resource Development and the Department of Chemical Engineering and Technology, IIT (BHU) Varanasi, for financial support as SRF.

References

[1] Butt H, Graf K, Kappl M. Front Matter in Physics and Chemistry of Interfaces. Wiley VCH: New York, USA, 2003.10.1002/3527602313Suche in Google Scholar

[2] Liu LJ, Chen RF, Liu WK. Surf. Coat. Tech. 2015, 272, 221–228.10.1016/j.surfcoat.2015.04.003Suche in Google Scholar

[3] Liu LJ, Liu WK, Chen RF. Chem. Eng. J. 2015, 281, 804–812.10.1016/j.cej.2015.07.028Suche in Google Scholar

[4] Lv D, Ou J, Xue M. Appl. Surf. Sci. 2015, 333, 163–169.10.1016/j.apsusc.2015.02.012Suche in Google Scholar

[5] Kamegawa T, Shimizu Y, Yamashita H. Adv. Mater. 2012, 24, 3697–3700.10.1002/adma.201201037Suche in Google Scholar PubMed

[6] Crick CR, Bear JC, Kafizas A, Parkin IP. Adv. Mater. 2012, 24, 3505–3508.10.1002/adma.201201239Suche in Google Scholar PubMed

[7] Paul DR, Mark JE. Polym. Sci. 2010, 35, 893–901.10.1016/j.progpolymsci.2010.03.004Suche in Google Scholar

[8] Ramezanzadeh B, Ghasemi E, Mahdavian M. Carbon 2015, 93, 555–573.10.1016/j.carbon.2015.05.094Suche in Google Scholar

[9] Rico V, Lopez C, Borras A, Espinos J P, Gonzalez-Elipe AR. Sol. Energ. Mat. Sol. C 2006, 90, 2944–2949.10.1016/j.solmat.2006.05.005Suche in Google Scholar

[10] Papadopoulou EL, Barberoglou M, Zorba V, Manousaki A, Pagkozidis A, Stratakis E, Fotakis C, Fotakis C. J. Phys. Chem. C 2009, 113, 2891–2895.10.1021/jp8085057Suche in Google Scholar

[11] Lim HS, Kwak D, Lee DY, Lee SG, Cho K. J. Am. Chem. Soc. 2007, 129, 4128–4129.10.1021/ja0692579Suche in Google Scholar PubMed

[12] Zhang F, Chen S, Dongb L, Lei Y, Liu T, Yin Y. Appl. Surf. Sci. 2011, 257, 2587–2591.10.1016/j.apsusc.2010.10.027Suche in Google Scholar

[13] Simon-Deckers A, Loo S, Mayne-Lhermite M, Herlin-Boime N, Menguy N, Reynaud C. Environ. Sci. Technol. 2009, 43, 8423–8432.10.1021/es9016975Suche in Google Scholar PubMed

[14] Haghi M, Hekmatafshar M, Janipour MB, Gholizadeh SS, Faraz MK, Sayyadifar F, Ghaedi M. Int. J. Adv. Biotechnol. Res. 2012, 3, 621–662.Suche in Google Scholar

[15] Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB. J. Am. Chem. Soc. 2008, 130, 64–72.10.1021/ja804852zSuche in Google Scholar

[16] Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P. Nano Lett. 2007, 128, 1286–1289.10.1021/nl070264kSuche in Google Scholar PubMed

[17] Zhang H, Liu P, Liu X, Zhang S, Yao X, An T, Amal R, Zhao H. Langmuir 2010, 26, 11226–11232.10.1021/la1005314Suche in Google Scholar PubMed

[18] Crupi V, Fazio B, Gessini A, Kis Z, Russa MFL, Majolino D, Masciovecchio C, Ricca M, Rossi B, Ruffolo SA, Venuti V. Constr. Build Mater. 2018, 166, 464–471.10.1016/j.conbuildmat.2018.01.172Suche in Google Scholar

[19] Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB. Chem. Eng. J. 2018, 336, 386–396.10.1016/j.cej.2017.12.029Suche in Google Scholar

[20] Ruhi G, Bhandari H, Dhawan SK. Prog. Org. Coat. 2014, 77, 1484–1498.10.1016/j.porgcoat.2014.04.013Suche in Google Scholar

[21] Barik RC, Wharton JA, Wood RJK. Surf. Coat. Tech. 2005, 199, 158–167.10.1016/j.surfcoat.2004.09.038Suche in Google Scholar

[22] Arif Z, Sethy NK, Kumari L, Mishra PK, Verma B. Korean J. Chem. Eng. 2019, 36, 1148–1156.10.1007/s11814-019-0297-8Suche in Google Scholar

[23] Arif Z, Sethy NK, Kumari L, Mishra PK, Verma B. J. Polym. Eng. 2019, 39, 545–555.10.1515/polyeng-2019-0007Suche in Google Scholar

[24] Zhai S, Zhai B, An Q. J. Sol Gel Sci. Technol. 2011, 59, 480–487.10.1007/s10971-011-2516-6Suche in Google Scholar

[25] Tellez L, Rubio J, Rubio F, Morales E, Oteo JL. Spectrosc. Lett. 2004, 37, 11–31.10.1081/SL-120028420Suche in Google Scholar

[26] Bogart K, Ramirez S, Gonzales L, Bogart G. J. Vac. Sci. Technol. 1998, A16, 3175–3184.10.1116/1.581517Suche in Google Scholar

[27] Ren K, Kagi DA. J. Chem. Technol. Biotechnol. 1995, 63, 237–246.10.1002/jctb.280630307Suche in Google Scholar

[28] Wang Q, Wang Z, Zhang J, Wang J, Wu Z. RSC Adv. 2014, 4, 43590–43598.10.1039/C4RA07274JSuche in Google Scholar

[29] Rahaman MS, Therien-Aubin H, Ben-Sasson M, Ober CK, Nielsen M, Elimelech M. J. Mater. Chem. B 2014, 2, 1724–1732.10.1039/c3tb21681kSuche in Google Scholar PubMed

[30] Jakiela S, Kaminski TS, Cybulski O, Weibeln DB, Garstecki P. Angew. Chem. Int. Ed. 2013, 52, 8908–8911.10.1002/anie.201301524Suche in Google Scholar PubMed PubMed Central

[31] Mauter MS, Wang Y, Okemgbo KC, Osuji CO, Giannelis EP, Elimelech M. ACS Appl. Mater. Interfaces 2011, 3, 2861–2868.10.1021/am200522vSuche in Google Scholar PubMed

[32] Hou S, Dong X, Zhu J, Zheng J, Bi W, Li S, Zhang S. J. Colloid Interface Sci. 2017, 496, 391–400.10.1016/j.jcis.2017.01.054Suche in Google Scholar PubMed

Received: 2019-08-02
Accepted: 2020-01-14
Published Online: 2020-02-28
Published in Print: 2020-02-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0257/html
Button zum nach oben scrollen