Startseite Supramolecular adsorption of cyclodextrin/polyvinyl alcohol film for purification of organic wastewater
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Supramolecular adsorption of cyclodextrin/polyvinyl alcohol film for purification of organic wastewater

  • Qingchen Lu , Nana Li EMAIL logo und Jialu Li
Veröffentlicht/Copyright: 15. Januar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Into purified organic wastewater, α-, β-, and γ-cyclodextrin (α-, β-, and γ-CD) were added to polyvinyl alcohol (PVA) with ammonium persulfate as the crosslinker. The CD/PVA composite film with low water solubility and supramolecular adsorption was prepared by solvent evaporation. Fourier transform infrared spectroscopy showed that when CD was successfully added to PVA, the crosslinking process had no effect on -OH, and the structure was stable after soaking in water for 120 h. Solubility experiments showed that the stability of PVA in water was significantly improved. The results of phenolphthalein adsorption showed that the composite film followed the Langmuir isothermal adsorption and the pseudo-second-order kinetics. According to the Langmuir equation, the theoretical maximum adsorption capacities of α-, β- and γ-CD/PVA composite films were 0.41, 2.05, and 2.00 mg/g, respectively. The parameters of the Freundlich equation indicate that the adsorption of the composite film is physical adsorption. The time for α-CD/PVA composite film to reach equilibrium was the shortest, while the longest was for β-CD/PVA composite film. The intraparticle diffusion model showed that the adsorption was mainly affected by the diffusion of the boundary layer, and the diffusion rate limitation of the boundary layer of the high-concentration phenolphthalein solution was more obvious.

  1. Conflict of interest statement: The authors declare that they have no conflict of interests.

References

[1] Zhang W, Chen L, Xu L, Dong H, Hu H, Xiao Y, Zheng M, Liu Y, Liang Y. J. Colloid Interface Sci. 2019, 537, 562–568.10.1016/j.jcis.2018.11.047Suche in Google Scholar PubMed

[2] Wang B, Liu HT, Chen C, Chen TC, Zhang HQ. Mater. Res. Exp. 2019, 6, 035501.10.1088/2053-1591/aaf359Suche in Google Scholar

[3] Zhan W, Gao L, Fu X, Siyal SH, Sui G, Yang X. Appl. Surf. Sci. 2019, 467, 1122–1133.10.1016/j.apsusc.2018.10.248Suche in Google Scholar

[4] Lehn JM. Angew. Chem. Int. Edn Engl. 1988, 27, 89–112.10.1002/anie.198800891Suche in Google Scholar

[5] Rekharsky MV, Inoue Y. Chem. Rev. , 98, 1875–1918.10.1021/cr970015oSuche in Google Scholar PubMed

[6] Jin W, Wang X, Zhang X. J. Mater. Chem. A 2017, 5, 4308–4313.10.1039/C6TA09677HSuche in Google Scholar

[7] Zheng S, Xia S, Han S, Yao F, Zhao H, Huang M. Sci. Total Environ. 2019, 693, 133676.10.1016/j.scitotenv.2019.133676Suche in Google Scholar PubMed

[8] Wang Z, Lin F, Huang L, Chang Z, Yang B, Liu S, Zheng M, Lu Y, Chen J. J. Environ. Pollut. 2019, 254, 112854.10.1016/j.envpol.2019.07.022Suche in Google Scholar PubMed

[9] Hou N, Wang R, Wang F, Bai J, Jiao T, Bai Z, Zhang L, Zhou J, Peng Q. Colloids Surf. Physicochem. Eng. Aspects 2019, 579, 123670.10.1016/j.colsurfa.2019.123670Suche in Google Scholar

[10] Li X, Nie XJ, Zhu YN, Ye WC, Jiang YL, Su SL, Yan BT. Colloids Surf. Physicochem. Eng. Aspects 2019, 578, 123582.10.1016/j.colsurfa.2019.123582Suche in Google Scholar

[11] Qin X, Bai L, Tan Y, Li L, Song F, Wang Y. Chem. Eng. J. 2019, 372, 1007–1018.10.1016/j.cej.2019.05.006Suche in Google Scholar

[12] Zhang YN, Niu Q, Gu X, Yang N, Zhao G. Nanoscale 2019, 11, 11992–12014.10.1039/C9NR02935DSuche in Google Scholar PubMed

[13] Qie F, Guo J, Tu B, Zhao X, Zhang Y, Yan Y. Chem. Asian J. 2018, 13, 2812–2817.10.1002/asia.201800970Suche in Google Scholar PubMed

[14] Zhao F, Repo E, Yin D, Chen L, Kalliola S, Tang J, et al. Sci. Rep. 2017, 7, 15811.10.1038/s41598-017-16222-7Suche in Google Scholar PubMed PubMed Central

[15] He C, Zhou Q, Duan Z, Xu X, Wang F, Li H. Res. Chem. Intermed. 2018, 44, 2983–2998.10.1007/s11164-018-3289-0Suche in Google Scholar

[16] Ma YX, Shao WJ, Sun W, Kou YL, Li X, Yang HP. Appl. Surf. Sci. 2018, 459, 544–553.10.1016/j.apsusc.2018.08.025Suche in Google Scholar

[17] Chen Y, Ma Y, Lu W, Guo Y, Zhu Y, Lu H, Song Y. Molecules 2018, 23, 2473.10.3390/molecules23102473Suche in Google Scholar PubMed PubMed Central

[18] Kadam V, Truong YB, Easton C, Mukherjee S, Wang L, Padhye R, Kyratzis IL. ACS Appl. Nano Mater. 2018, 1, 4268–4277.10.1021/acsanm.8b01056Suche in Google Scholar

[19] Ma S, Wang S, Qian L, Leng Y, Hu GH. Ind. Eng. Chem. Res. 2017, 56, 7971–7976.10.1021/acs.iecr.7b01812Suche in Google Scholar

[20] Wang Z, Qiao X, Kang S. Carbohydr. Polym. 2018, 197, 442–450.10.1016/j.carbpol.2018.06.025Suche in Google Scholar PubMed

[21] Duan Z, Song M, Li T, Liu S, Xu X, Qin R, He C, Wang Y, Xu L, Zhang M. RSC Adv. 2018, 8, 31542–31554.10.1039/C8RA06171HSuche in Google Scholar

[22] Bezuidenhout D, Hurndall MJ, Sanderson RD, Reenen AJV. Desalination 1998, 116, 35–43.10.1016/S0011-9164(98)00055-1Suche in Google Scholar

[23] Shang S, Chiu KL, Jiang S. J. Appl. Polym. Sci. 2017, 134, 44861.Suche in Google Scholar

[24] Wang Z, Guo S, Zhang B, Fang J, Zhu L. J. Hazard Mater. 2020, 384, 121187.10.1016/j.jhazmat.2019.121187Suche in Google Scholar PubMed

[25] Radchenko O, Sinelnikov S, Moskalenko O, Riabov S. J. Appl. Polym. Sci. 2018, 135, 46373.10.1002/app.46373Suche in Google Scholar

[26] Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Tambourgi EB. Chem. Eng. J. 2011, 168, 68–76.10.1016/j.cej.2010.12.037Suche in Google Scholar

[27] Li X, Wang Z, Liang H, Ning J, Li G, Zhou Z. Environ. Technol. 2019, 40, 112–124.10.1080/09593330.2017.1380712Suche in Google Scholar PubMed

[28] Czarna D, Baran P, Kunecki P, Panek R, Żmuda R, Wdowin M. J. Cleaner Prod. 2018, 172, 2636–2645.10.1016/j.jclepro.2017.11.147Suche in Google Scholar

[29] Simonin JP. Chem. Eng. J. 2016, 300, 254–263.10.1016/j.cej.2016.04.079Suche in Google Scholar

[30] Crank J. The Mathematics of Diffusion. Oxford Science Publications: Oxford, England, 1975.Suche in Google Scholar

[31] Crini G, Peindy HN, Gimbert F, Robert C. Separat. Purif. Technol. 2007, 53, 97–110.10.1016/j.seppur.2006.06.018Suche in Google Scholar

[32] Crini G, Peindy HN. Dyes Pigments 2006, 70, 204–211.10.1016/j.dyepig.2005.05.004Suche in Google Scholar

[33] Crini G. Bioresour. Technol. 2003, 90, 193–198.10.1016/S0960-8524(03)00111-1Suche in Google Scholar

[34] Weber WJ, Morris JC. J. Sanitary Eng. Division 1963, 89, 31–60.10.1061/JSEDAI.0000430Suche in Google Scholar

[35] Zarzycki PK, Lamparczyk H. J. Chem. Educ. 1996, 73, 459.10.1021/ed073p459Suche in Google Scholar

[36] Fuhrer R, Herrmann IK, Athanassiou EK, Grass RN, Stark WJ. Langmuir 2011, 27, 1924–1929.10.1021/la103873vSuche in Google Scholar

[37] Grégorio C. Chem. Rev. 2014, 114, 10940–10975.10.1021/cr500081pSuche in Google Scholar

[38] Szejtli J. Cyclodextrin inclusion complexes. Cyclodextrin Technology. Springer: The Netherlands, 1988, pp. 79–185.10.1007/978-94-015-7797-7_2Suche in Google Scholar

[39] Bilensoy E. Cyclodextrins and their inclusion complexes. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine, pp.1–18.Suche in Google Scholar

[40] Webber MJ, Langer R. Chem. Soc. Rev. 2017, 46, 6600–6620.10.1039/C7CS00391ASuche in Google Scholar

[41] Sarti GC, Doghieri F. Chem. Eng. Sci. 1994, 49, 733–747.10.1016/0009-2509(94)85019-4Suche in Google Scholar

Received: 2019-08-15
Accepted: 2019-12-05
Published Online: 2020-01-15
Published in Print: 2020-01-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0253/html
Button zum nach oben scrollen