Startseite Naturwissenschaften Volume fraction and width of ribbon-like crystallites control the rubbery modulus of segmented block copolymers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Volume fraction and width of ribbon-like crystallites control the rubbery modulus of segmented block copolymers

  • Matthias Nébouy , Ameur Louhichi und Guilhem P. Baeza ORCID logo EMAIL logo
Veröffentlicht/Copyright: 12. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We discuss the origin of the plateau modulus enhancement (χ) in semi-crystalline segmented block copolymers by increasing the concentration in hard segments within the chains (XHS). The message we deliver is that the plateau modulus of these thermoplastic elastomers is greatly dominated by the volume fraction (Φ) and the width (W) of crystallites according to χ–1 ~ ΦW in agreement with a recent topological model we have developed. We start by a quick review of literature with the aim to extract χ(Φ) for different chemical structures. As we suspected, we find that most of the data falls onto a mastercurve, in line with our predictions, confirming that the reinforcement in such materials is mainly dominated by the crystallite’s content. This important result is then supported by the investigation of copolymer mixtures in which Φ is fixed, providing a similar reinforcement, while the chains compositions is significantly different. Finally, we show that the reinforcement can be enhanced at constant Φ by increasing W for a given class of block copolymers. This can be done by changing the process route and is again in good agreement with our expectations.

Acknowledgments

All the authors thank Dimitris Vlassopoulos (FORTH) and Evelyne Van Ruymbeke (Univ. Louvain-la-Neuve) for enlightening discussions and technical support as well as Carel Fitié, Wilco Appel, Luna Imperiali, and Ashwinikumar Sharma (DSM Ahead) for providing the TPE. G.P.B. thanks Nino Grizzuti (Univ. Federico II, Naples) for his invitation to publish in the special issue of Journal of Polymer Engineering on industrial polymer rheology.

  1. Funding: M.N. is thankful to the French Ministry of Research for funding his PhD. EU FP7 – ETN SUPOLEN, Grant Number: GA-607937.

Appendix 1: Details on the topological model – see Ref. [25]

The topological model to which we largely refer in this article considers the HS crystallites as local densifications of the amorphous network rather than independent objects. The reason for this resides in the fact that all the HS are directly connected to two SS through covalent bonds. Following this logic, we propose to count the extra-number of topological node induced by the crystallites and use the rubber elasticity theory to calculate the resulting reinforcement.

Because the rubbery modulus is driven by the density of entanglements in the amorphous melt, we assume that the extra reinforcement caused by the crystallites must be calculated from the same length scale. Our model lies in Appendix Figure 1 below in which:

  1. Re is the tube diameter (tube model).

  2. H and W are, respectively the height (along the chain axis) and the width (perpendicular to the chain axis) of the crystallite.

  3. R is the section of the TPE molecule (=cell parameter) that we assume equal along L and W.

  4. NH, NW, and NLe are the number of HS along the three directions, with Nce=NWNLe, (NH=1 by construction).

Appendix Figure 1: Schematic representation of the topological nodes present in a subspace of soft-phase crossed by a HS crystallite. By construction, the HS can stack along W→$\vec W$ and L→$\vec L$ only.
Appendix Figure 1:

Schematic representation of the topological nodes present in a subspace of soft-phase crossed by a HS crystallite. By construction, the HS can stack along W and L only.

Considering then the volume fraction in “reinforced” rubber, i.e. Φ and the inter-crystallites distance (periodicity) d*, our model leads to:

(I)χ=GNTPEGN0=1+Φ(Nce1)

with:

(II)Nce=ReR2Φd*2μH=ReR2W

where μ=1 or 3 (see full article) and Wd*2/μH. Then, by combining I and II and assuming Nce≫1, we obtain the following expression (two possible forms displaying d* or W):

(III-a)χ=1+Red*2R2μHΦ2
(III-b)χ=1+ReR2WΦ

Eq. (III) is the main output of our model describing the reinforcement as a function of the volume fraction in crystallites. It is also interesting to note that d* is usually seen to decrease with Φ such as d*λ (with14<λ<12 describing the crystallites arrangement) and therefore W1−2λ leading to:

(IV)χ1Φ2(1λ)

We found Eq. (III) to be valid up to XHS=15 wt%. For higher values another equation was developed by considering non-Gaussian conformations of the SS. However, both models could be unified through the use of an empirical approximation such as:

(V)χ=exp(AΦ)

with A an empirical value was found to be equal to 18.38 for T4T/PTHF samples. Note that keeping this value for the whole set of TPE in Figure 1 gives quite satisfactory results too.

References

[1] Drobny JG. Handbook of Thermoplastic Elastomers, Elsevier, Oxford, UK, 2014.10.1016/B978-0-323-22136-8.00013-2Suche in Google Scholar

[2] Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH. Science 2012, 336, 434–440.10.1126/science.1215368Suche in Google Scholar

[3] Rapra S. https://www.smithersrapra.com/market-reports/rubber-and-elastomer-industry/the-future-of-thermoplastic-elastomers-to-2024, 2019.Suche in Google Scholar

[4] Okamoto K-I, Fuji M, Okamyo S, Suzuki H, Tanaka K, Kita H. Macromolecules 1995, 28, 6950–6956.10.1021/ma00124a035Suche in Google Scholar

[5] Bondar V, Freeman B, Pinnau I. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 2051–2062.10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-DSuche in Google Scholar

[6] Lim GT, Puskas JE, Reneker DH, Jakli A, Horton Jr WE. Biomacromolecules 2011, 12, 1795–1799.10.1021/bm200157bSuche in Google Scholar

[7] Li H, White JL. Polym. Eng. Sci. 2000, 40, 917–928.10.1002/pen.11219Suche in Google Scholar

[8] Sharma A, Baeza GP, Imperiali L, Appel WPJ, Fitié C, Poel GV, van Ruymbeke E. Polym. Int. 2018, 68, 283–293.10.1002/pi.5713Suche in Google Scholar

[9] Botterhuis NE, Van Beek D, van Gemert GM, Bosman AW, Sijbesma RP. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 3877–3885.10.1002/pola.22680Suche in Google Scholar

[10] van der Schuur M, Gaymans RJ. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 4769–4781.10.1002/pola.21587Suche in Google Scholar

[11] Vinogradov G, Dreval V, Malkin AY, Yanovsky YG, Barancheeva V, Borisenkova E, Zabugina M, Plotnikova E, Sabsai OY. Rheol. Acta 1978, 17, 258–263.10.1007/BF01535062Suche in Google Scholar

[12] Miller JA, Lin SB, Hwang KKS, Wu KS, Gibson PE, Cooper SL. Macromolecules 1985, 18, 32–44.10.1021/ma00143a005Suche in Google Scholar

[13] Nébouy M, de Almeida A, Brottet S, Baeza GP. Macromolecules 2018, 51, 6291–6302.10.1021/acs.macromol.8b01279Suche in Google Scholar

[14] Appel WPJ, Portale G, Wisse E, Dankers PYW, Meijer EW. Macromolecules 2011, 44, 6776–6784.10.1021/ma201303sSuche in Google Scholar

[15] Castagna AM, Pangon A, Choi T, Dillon GP, Runt J. Macromolecules 2012, 45, 8438–8444.10.1021/ma3016568Suche in Google Scholar

[16] Versteegen RM, Sijbesma RP, Meijer EW. Macromolecules 2005, 38, 3176–3184.10.1021/ma0478207Suche in Google Scholar

[17] Pichon PG, David L, Méchin F, Sautereau H. Macromolecules 2010, 43, 1888–1900.10.1021/ma901602ySuche in Google Scholar

[18] Yilgör I, Yilgör E, Wilkes GL. Polymer 2015, 58, A1–A36.10.1016/j.polymer.2014.12.014Suche in Google Scholar

[19] Buckwalter DJ, Dennis JM, Long TE. Progr. Polym. Sci. 2015, 45, 1–22.10.1016/j.progpolymsci.2014.11.003Suche in Google Scholar

[20] Gaymans R, De Haan J. Polymer 1993, 34, 4360–4364.10.1016/0032-3861(93)90202-LSuche in Google Scholar

[21] Gaymans RJ. Progr. Polym. Sci. 2011, 36, 713–748.10.1016/j.progpolymsci.2010.07.012Suche in Google Scholar

[22] Sijbrandi NJ, Kimenai AJ, Mes EPC, Broos R, Bar G, Rosenthal M, Odarchenko Y, Ivanov DA, Dijkstra PJ, Feijen J. Macromolecules 2012, 45, 3948–3961.10.1021/ma2022309Suche in Google Scholar

[23] Alexander S. J. Phys. 1977, 38, 983–987.10.1051/jphys:01977003808098300Suche in Google Scholar

[24] de Gennes P. Macromolecules 1980, 13, 1069–1075.10.1021/ma60077a009Suche in Google Scholar

[25] Baeza GP. Macromolecules 2018, 51, 1957–1966.10.1021/acs.macromol.7b02208Suche in Google Scholar

[26] Guffond M, Williams D, Sevick E. Langmuir 1997, 13, 5691–5696.10.1021/la970377rSuche in Google Scholar

[27] Ennis J, Sevick E, Williams D. Phys. Rev. E 1999, 60, 6906.10.1103/PhysRevE.60.6906Suche in Google Scholar

[28] Lee HS, Park HD, Cho CK. J. Appl. Polym. Sci. 2000, 77, 699–709.10.1002/(SICI)1097-4628(20000718)77:3<699::AID-APP25>3.0.CO;2-HSuche in Google Scholar

[29] Ginzburg VV, Bicerano J, Christenson CP, Schrock AK, Patashinski AZ. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 2123–2135.10.1002/polb.21213Suche in Google Scholar

[30] Van Hutten PF, Mangnus RM, Gaymans RJ. Polymer 1993, 34, 4193–4202.10.1016/0032-3861(93)90176-BSuche in Google Scholar

[31] Husken D, Feijen J, Gaymans RJ. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 4522–4535.10.1002/pola.22186Suche in Google Scholar

[32] Bessell T, Hull D, Shortall J. J. Mater. Sci. 975, 10, 1127–1136.10.1007/BF00541393Suche in Google Scholar

[33] Bensason S, Minick J, Moet A, Chum S, Hiltner A, Baer E. J. Polym. Sci. Part B Polym. Phys. 1996, 34, 1301–1315.10.1002/(SICI)1099-0488(199605)34:7<1301::AID-POLB12>3.0.CO;2-ESuche in Google Scholar

[34] Baeza GP, Sharma A, Louhichi A, Imperiali L, Appel WPJ, Fitié CFC, Lettinga MP, Ruymbeke EV, Vlassopoulos D. Polymer 2016, 107, 89–101.10.1016/j.polymer.2016.11.010Suche in Google Scholar

[35] de Almeida A, Nébouy M, Baeza GP. Macromolecules 2019, 52, 1227–1240.10.1021/acs.macromol.8b01689Suche in Google Scholar

[36] Krijgsman J, Husken D, Gaymans RJ. Polymer 2003, 44, 7573–7588.10.1016/j.polymer.2003.09.043Suche in Google Scholar

[37] Biemond GJE, Feijen J, Gaymans RJ. J. Appl. Polym. Sci. 2007, 105, 951–963.10.1002/app.26202Suche in Google Scholar

[38] Arun A, Gaymans RJ. Macromol. Chem. Phys. 2008, 209, 854–863.10.1002/macp.200700532Suche in Google Scholar

[39] Niesten M, Feijen J, Gaymans R. Polymer 2000, 41, 8487–8500.10.1016/S0032-3861(00)00252-4Suche in Google Scholar

[40] Fetters LJ, Lohse DJ, Colby RH. In Physical Properties of Polymers Handbook, Mark, JE, Eds., Springer, New York, 2007, pp. 447–454.10.1007/978-0-387-69002-5_25Suche in Google Scholar

[41] Biemond GJE, Feijen J, Gaymans RJ. Polym. Eng. Sci. 2008, 48, 1389–1400.10.1002/pen.21115Suche in Google Scholar

[42] Hirt VP, Herlinger H. Appl. Macromol. Chem. Phys. 1974, 40, 71–88.10.1002/apmc.1974.050400104Suche in Google Scholar

[43] Sharma A. Synthesis and thermo-rheological properties of thermoplastic elastomers based on hydrogen-bonded hard segments, in Institute of Condensed Matter and Nanosciences, Université Catholique Louvain-la-Neuve, 2019.Suche in Google Scholar

[44] Wegner G. In Thermoplastic Elastomers: A Comprehensive Review, Legge NR, Holden G., Schroeder HF, Eds., Carl Hanser Verlag, Munich, 1987, pp. 405–430.Suche in Google Scholar

[45] Affdl JCH, Kardos JL. Polym. Eng. Sci. 1976, 16, 344–352.10.1002/pen.760160512Suche in Google Scholar

[46] Genix A-C, Bocharova V, Kisliuk A, Carroll B, Zhao S, Oberdisse J, Sokolov AP. ACS Appl. Mater. Interfaces 2018, 10, 33601–33610.10.1021/acsami.8b13109Suche in Google Scholar PubMed

Received: 2019-08-09
Accepted: 2019-09-04
Published Online: 2019-10-12
Published in Print: 2020-10-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0222/html
Button zum nach oben scrollen