An attempt to correlate the physical properties of fossil and subfossil resins with their age and geographic location
-
Paweł Stach
, Gintarė Martinkutė
, Petras Šinkūnas , Lucyna Natkaniec-Nowak , Przemysław Drzewicz , Beata Naglik und Maxim Bogdasarov
Abstract
Testing of the correlation between physical properties of natural resins such as microhardness, density and UV-excited fluorescence emission with their age, geological conditions, botanical and geographical origin and chemical structure was performed. These physical parameters, especially microhardness, are the result of resins fossilization processes like cross-linking and polymerizations of compounds present in the fossils. In addition, hardening of the resins may be also an effect of miscellaneous chemical processes induced by various environmental, biological and geological conditions. The principal component analysis found that the correlation of microhardness, density and fluorescence intensity with the resin age is quite low. The results suggest that variability of physical properties is caused by geographic location and locally occurring geological conditions. The physical properties of natural resins are most strongly correlated with chemical structure and geographic location. The resins with higher microhardness values come from marine environment depositions. The same trend was observed for resins affected by volcanic activity. Moreover, high fluorescence intensity was also observed for resins affected by above mentioned geological conditions. However, the density values of tested resins revealed the lowest correlation with their age, botanical source and geological history.
Funding source: AGH University of Science and Technology
Award Identifier / Grant number: 11.11.140.158
Award Identifier / Grant number: 15.11.140.208
Funding source: The Polish Geological Institute-National Research Institute
Award Identifier / Grant number: 61-2816-1801-000
Funding statement: The authors would like to thank Anselm Krumbiegel and Kazimieras Mizgiris for samples of resins for the research. This study was supported by research grant numbers 11.11.140.158 and 15.11.140.208 (AGH University of Science and Technology; funder id: https://doi.org/10.13039/501100007751) and research project No. 61-2816-1801-000 (The Polish Geological Institute-National Research Institute).
References
[1] Carrow JK, Gaharwar AK. Macromol. Chem. Phys. 2015, 216, 248–264.10.1002/macp.201400427Suche in Google Scholar
[2] Gaidukovs S, Lyashenko I, Rombovska J, Gaidukova G. Text. Res. J. 2016, 86, 2127–2139.10.1177/0040517515621130Suche in Google Scholar
[3] Gold D, Hazen B, Miller W. Org. Geochem. 1999, 30, 971–983.10.1016/S0146-6380(99)00083-2Suche in Google Scholar
[4] Gough LJ, Mills JS. Nature 1972, 239, 527–528.10.1038/239527a0Suche in Google Scholar
[5] Grimalt JO, Simoneit BRT, Hatcher PG, Nissenbaum A. Org. Geochem. 1988, 13, 677–690.10.1016/0146-6380(88)90089-7Suche in Google Scholar
[6] Langenheim JH. Plant resins. Chemistry, Evolution, Ecology, and Ethnobotany. Timber Press, Cambridge: Portland, 2003.Suche in Google Scholar
[7] Mills JS, White R, Gough LJ. Chem. Geol. 1984, 47, 15–39.10.1016/0009-2541(84)90097-4Suche in Google Scholar
[8] Menor-Salván C, Simoneit BR, Ruiz-Bermejo M, Alonso J. Org. Geochem. 2016, 93, 7–21.10.1016/j.orggeochem.2015.12.010Suche in Google Scholar
[9] Schlüter T, Von Gnielinski F. National Museum of Tanzania Occasional Papers 1987, 8, 1–32.Suche in Google Scholar
[10] Anderson KB. Org. Geochem. 1997, 25, 251–253.10.1016/S0146-6380(96)00137-4Suche in Google Scholar
[11] Kosmowska-Ceranowicz B. Polski Jubiler 2001, 1, 24–27 [in Polish].Suche in Google Scholar
[12] Kosmowska-Ceranowicz B. Bursztyn w Polsce i na świecie [Amber in Poland and in the world], 1st ed., Wydawnictwa Uniwersytetu Warszawskiego: Warsaw, 2012.10.31338/uw.9788323510222Suche in Google Scholar
[13] Anderson KB. In Amber, Resinite and Fossil Resins, Anderson KB, Crelling J, Eds., Am Chem Soc.: Washington, 1995, pp. 105–129.10.1021/bk-1995-0617.ch006Suche in Google Scholar
[14] Bosselaers J, Dierick M, Cnudde V, Masschaele B, Van Hoorebeke L, Jacobs P. Zootaxa 2010, 2427, 25–35.10.11646/zootaxa.2427.1.3Suche in Google Scholar
[15] Anderson KB, Winans EE, Botto RE. Org. Geochem. 1992, 18, 829–841.10.1016/0146-6380(92)90051-XSuche in Google Scholar
[16] Bogdasarov MA. Geol. Ore Deposits 2007, 49, 630–637.10.1134/S1075701507070215Suche in Google Scholar
[17] Bogdasarov MA. Amber and Others Fossil Resins of Eurasia, BrSU A.S. Pushkin: Brest, 2010.Suche in Google Scholar
[18] Kosmowska-Ceranowicz B. Estudios del Museo de Ciencias Naturales de Alava 1999, 14, 73–117.Suche in Google Scholar
[19] Ragazzi E, Schmidt AR. In Encyclopedia of Geobiology, Reitner J, Thiel V, Eds., Springer, Netherlands, 2011, pp. 24–36.10.1007/978-1-4020-9212-1_9Suche in Google Scholar
[20] Roghi G, Ragazzi E, Gianolla P. Palaios 2006, 21, 143–154.10.2110/palo.2005.p05-68Suche in Google Scholar
[21] Zherikhin VV, Eskov KY. Estudios del Museo de Ciencias Naturales de Álava 1999, 14, 119–131.Suche in Google Scholar
[22] Kraemer MMS, Kraemer AS, Stebner F, Bickel DJ, Rust J. PLoS One 2015, 10, e0118820.10.1371/journal.pone.0118820Suche in Google Scholar
[23] Larson DW. Can. J. Bot. 1978, 56, 2119–2123.10.1139/b78-253Suche in Google Scholar
[24] Phillips TL, Peppers RA. Int. J. Coal Geol. 1984, 3, 205–255.10.1016/0166-5162(84)90019-3Suche in Google Scholar
[25] Sinitsin VM. Drevnie klimaty Evrazii: paleogen i neogen [Ancient Climates of Eurasia: Palaeogene and Neogene]. Part 1, Leningr. Gos. Univ.: Lenningrad, 1965 [in Russian].Suche in Google Scholar
[26] Wolfe AP, Tappert R, Muehlenbachs K, Boudreau M, McKellar RC, Basinger JF, Garrett A. Proc. R. Soc. Lond. Ser. B 2009, 276, 3403–3412.10.1098/rspb.2009.0806Suche in Google Scholar PubMed PubMed Central
[27] Ziegler AM, Raymond AL, Gierlowski TC, Horrell MA, Rowley DB, Lottes AL. J. Geol. Soc. 1987, 32, 25–49.10.1144/GSL.SP.1987.032.01.04Suche in Google Scholar
[28] Kelly PM, Sear CB. Nature 1984, 311, 340–343.10.1056/NEJM198408023110534Suche in Google Scholar
[29] Kosmowska-Ceranowicz B, Sachanbiński M, Łydżba-Kopczyńska B. Baltica 2017, 30, 55–60.10.5200/baltica.2017.30.06Suche in Google Scholar
[30] Mitchell AHG. In Tectonic Evolution of the Tethyan Region, Sengör AMC, Ed., Springer: Dordrecht, 1989, pp. 567–583.10.1007/978-94-009-2253-2_24Suche in Google Scholar
[31] Mitchell AHG. J. Geol. Soc. 1993, 150, 1089–1102.10.1144/gsjgs.150.6.1089Suche in Google Scholar
[32] Cunningham A, West PR, Hammond GS, Langenheim JH. Phytochemistry 1977, 16, 1442–1443.10.1016/S0031-9422(00)88803-2Suche in Google Scholar
[33] Jehlička J, Jorge Villar SE, Edwards HGM. J. Raman Spectrosc. 2004, 35, 761–767.10.1002/jrs.1191Suche in Google Scholar
[34] Naglik B, Kosmowska-Ceranowicz B, Natkaniec-Nowak L, Drzewicz P, Dumańska-Słowik M, Matusik J, Wagner M, Milovsky R, Stach P, Szyszka A. Minerals 2018, 8, 95–107.10.3390/min8030095Suche in Google Scholar
[35] Winkler W, Kirchner EC, Asenbaum A, Musso MA. J. Raman Spectrosc. 2001, 32, 59–63.10.1002/1097-4555(200101)32:1<59::AID-JRS670>3.0.CO;2-DSuche in Google Scholar
[36] Savkevich SS. Mineralogicheskiy Sbornik 1967, 21, 198–204.10.1038/bjc.1967.21Suche in Google Scholar
[37] Poinar Jr GO. Life in Amber, Stanford University Press: Palo Alto, 1992.10.1515/9781503623545Suche in Google Scholar
[38] Popkova TN. Zapiski Rossiyskogo mineralogicheskogo obshchestva 1984, 113, 128–133 [in Russian].Suche in Google Scholar
[39] Rice PC. Amber. The Golden Gem of the Ages, Kosciusko Foundation: New York, 1987.Suche in Google Scholar
[40] Savkevich SS. Phys. Chem. Miner. 1981, 7, 1–4.10.1007/BF00308192Suche in Google Scholar
[41] Matuszewska A. Bursztyn (sukcynit), inne żywice kopalne, subfosylne i współczesne [Amber (Succinite) and other modern, subfossil and fossil resins)], Oficyna Wydawnicza Wacław Walasek: Katowice, 2010 [in Polish].Suche in Google Scholar
[42] Matuszewska A, Gołąb A. Bursztynisko 2008, 31, 56–61.10.1097/01.wnf.0000265973.42277.c7Suche in Google Scholar
[43] Matuszewska A, Gołąb A, Salomon A. Polski Jubiler 2002, 1, 26–29 [in Polish].Suche in Google Scholar
[44] Matuszewska A, John A. Acta Chromatogr. 2004, 14, 82–91.10.1055/s-2003-814833Suche in Google Scholar
[45] Bellani V, Giulotto E, Linati L, Sacchi D. J. Appl. Phys. 2005, 97, 016101.10.1063/1.1829395Suche in Google Scholar
[46] Chekryzhov IY, Nechaev VP, Kononov VV. Int. J. Coal Geol. 2014, 132, 6–12.10.1016/j.coal.2014.07.013Suche in Google Scholar
[47] Bukejs A, Legalov AA. Paleontol. J. 2017, 51, 196–202.10.1134/S003103011702006XSuche in Google Scholar
[48] McCoy VE, Boom A, Kraemer MMS, Gabbott SE. Org. Geochem. 2017, 113, 43–54.10.1016/j.orggeochem.2017.08.005Suche in Google Scholar
[49] Hall R, van Hattum MWA, Spakman W. Tectonophysics 2008, 451, 366–389.10.1016/j.tecto.2007.11.058Suche in Google Scholar
[50] Liechti P, Roe FW, Haile NS. The Geology of Sarawak, Brunei, and the Western Part of North Borneo, 1st ed., British Geological Survey Bulletin, 1960.Suche in Google Scholar
[51] Iturralde-Vinent MA. Caribb. J. Sci. 2001, 37, 141–167.Suche in Google Scholar
[52] Iturralde-Vinent MA, MacPhee RDE. Science 1996, 273, 1850–1852.10.1126/science.273.5283.1850Suche in Google Scholar
[53] Poinar Jr GO. Ann. Soc. Entomol. Fr. 2010, 46, 23–52.10.1080/00379271.2010.10697637Suche in Google Scholar
[54] Bachmann R. The Caribbean plate and the Question of its Formation, Institute of Geology, University of Mining and Technology, Department of Tectonophysics: Freiberg, 2001.Suche in Google Scholar
[55] Kraemer MMS. In Biodiversity of Fossils in Amber from the Major World Deposits, Penney D, Ed., Siri Scientific Press: Manchester, 2010, pp. 42–56.Suche in Google Scholar
[56] Poinar Jr GO, Brown AE. Bot. J. Linn. Soc. 2002, 139, 125–132.10.1046/j.1095-8339.2002.00053.xSuche in Google Scholar
[57] Crow MJ, Barber AJ, Milsom JS, Eds., Sumatra: Geology, Resources and Tectonic Evolution, Geological Society Memoirs, 2004.Suche in Google Scholar
[58] Adiwidjaja P, Decoster GL. Pre-Tertiary Paleotopography and Related Sedimentation in South Sumatra, Indonesian Petroleum Association Second Annual Convention, June, 1973.10.29118/IPA.722.89.103Suche in Google Scholar
[59] Brackman W, Spaargaren K, Van Dongen JPCM, Couperus PA, Bakker F. Geochim. Cosmochim. Acta 1984, 48, 2483–2487.10.1016/0016-7037(84)90299-0Suche in Google Scholar
[60] Lambert JB, Levy AJ, Santiago-Blay JA, Wu Y. Life: The Excitement of Biology 2013, 1, 136–155.10.9784/LEB1(3)Lambert.02Suche in Google Scholar
[61] Yamamoto S, Otto A, Krumbiegel G, Simoneit BRT. Rev. Palaeobot. Palyno. 2006, 140, 27–49.10.1016/j.revpalbo.2006.02.002Suche in Google Scholar
[62] Perkovsky EE, Zosimovich VY, Vlaskin AP. In Biodiversity of Fossils in Amber from the Major World Deposits, Penney D, Ed., Siri Scientific Press: Manchester, 2010, pp. 116–136.Suche in Google Scholar
[63] Wang B, Rust J, Engel MS, Szwedo J, Dutta S, Nel A, Fan Y, Meng F, Shi G, Jarzembowski EA, Wappler T, Stebner F, Fang Y, Mao L, Zheng D, Zhang H. Curr. Biol. 2014, 24, 1606–1610.10.1016/j.cub.2014.05.048Suche in Google Scholar
[64] Zhang Q, Nel A, Azar D, Wang B. Alcheringa 2016, 40, 366–372.10.1080/03115518.2016.1144952Suche in Google Scholar
[65] Brasero N, Nel A, Michez D. Denisia 2009, 26, 41–52.Suche in Google Scholar
[66] McKellar RC, Wolfe AP, Penney D. In Biodiversity of Fossils in Amber from the Major World Deposits, Penney D, Ed., Siri Scientific Press: Manchester, 2010, pp. 96–113.Suche in Google Scholar
[67] Oda H. AAPG International Conference. 2003, 1–5.Suche in Google Scholar
[68] Hashimoto M, Ed., Geology of Japan, Springer Science & Business Media, 1991.Suche in Google Scholar
[69] Aber SW. 1996–2004. Geographic Occurrence of Amber. http://academic.emporia.edu/abersusa/geograph.htm, [Accessed 5 July 2018].Suche in Google Scholar
[70] Cruickshank RD, Ko K. J. Asian Earth Sci. 2003, 21, 441–455.10.1016/S1367-9120(02)00044-5Suche in Google Scholar
[71] Shi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, Lei W, Li Q, Li X. Cretaceous Res. 2012, 37, 155–163.10.1016/j.cretres.2012.03.014Suche in Google Scholar
[72] Coty D, Lebon M, Nel A. Ann. Soc. Entomol. Fr. 2016, 52, 161–166.10.1080/00379271.2016.1230477Suche in Google Scholar
[73] Schmidt AR, Perrichot V, Svojtka M, Anderson KB, Belete KH, Bussert R, Dörfelt H, Jancke S, Mohr B, Mohrmann E, Nascimbene PC, Nel A, Nel P, Ragazzi E, Roghi G, Saupe EE, Schmidt K, Schneider H, Selden PA, Vávra N. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 7329–7334.10.1073/pnas.1000948107Suche in Google Scholar PubMed PubMed Central
[74] Azar D, Gèze R, Acra F. In Biodiversity of Fossils in Amber from the Major World Deposits, Penney D, Ed., Siri Scientific Press: Manchester, 2010, pp. 271–298.Suche in Google Scholar
[75] Kaddumi HF. Amber of Jordan: The Oldest Prehistoric Insects in Fossilized Resin, Eternal River Museum of Natural History: Amman, 2007.Suche in Google Scholar
[76] Poinar Jr GO. Proc. Entomol. Soc. Wash. 2008, 110, 1251–1252.10.4289/0013-8797-110.4.1251Suche in Google Scholar
[77] Alvarez W, Asaro F, Michel HV, Alvarez LW. Science 1982, 216, 886–888.10.1126/science.216.4548.886Suche in Google Scholar PubMed
[78] Vonhof HB, Smit J, Brinkhuis H, Montanari A, Nederbragt AJ. Geology 2000, 28, 687–690.10.1130/0091-7613(2000)28<687:GCABEL>2.0.CO;2Suche in Google Scholar
[79] Kawamura T, Koshino H, Nakamura T, Nagasawa Y, Nanao H, Shirai M, Uesugi S, Ohno M, Kimura K. Org. Geochem. 2018, 120, 12–18.10.1016/j.orggeochem.2018.02.014Suche in Google Scholar
[80] Mallick M, Dutta S, Greenwood PF. Int. J. Coal Geol. 2014, 121, 129–136.10.1016/j.coal.2013.11.013Suche in Google Scholar
[81] Bechtel A, Chekryzhov IY, Nechaev VP, Kononov VV. Int. J. Coal Geol. 2016, 167, 176–183.10.1016/j.coal.2016.10.005Suche in Google Scholar
[82] Liu Y, Shi G, Wang S. Gems Gemol. 2014, 50, 2–8.10.5741/GEMS.50.1.2Suche in Google Scholar
[83] Kosmowska-Ceranowicz B. Polski Jubiler 2000, 1, 18–20 [in Polish].Suche in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Chitosan as an emerging object for biological and biomedical applications
- Investigation of the properties of polystyrene-based wood plastic composites: effects of the flame retardant loading and magnetic fields
- An attempt to correlate the physical properties of fossil and subfossil resins with their age and geographic location
- Effect of heat treatment on the thermophysical properties of copper-powder-filled polycarbonate and polycarbonate containing paraffin
- Preparation and assembly
- Preparation of hydrophilic reactive polyurethane and its application of anti-water erodibility in ecological restoration
- Antimicrobial gelatin/sericin/clay films for packaging of hygiene products
- Functional sol-gel coated electrospun polyamide 6,6/ZnO composite nanofibers
- Influence of the incorporation of different chemically functionalized carbon nanotubes in polyurethane resin applied on aluminum
- Engineering and processing
- Influence of shrinkage of polymer on the stationarity of propagation of frontal polymerization heat waves
- Influence of titanium oxide-based colourants on the morphological and tribomechanical properties of injection-moulded polyoxymethylene spur gears
Artikel in diesem Heft
- Frontmatter
- Material properties
- Chitosan as an emerging object for biological and biomedical applications
- Investigation of the properties of polystyrene-based wood plastic composites: effects of the flame retardant loading and magnetic fields
- An attempt to correlate the physical properties of fossil and subfossil resins with their age and geographic location
- Effect of heat treatment on the thermophysical properties of copper-powder-filled polycarbonate and polycarbonate containing paraffin
- Preparation and assembly
- Preparation of hydrophilic reactive polyurethane and its application of anti-water erodibility in ecological restoration
- Antimicrobial gelatin/sericin/clay films for packaging of hygiene products
- Functional sol-gel coated electrospun polyamide 6,6/ZnO composite nanofibers
- Influence of the incorporation of different chemically functionalized carbon nanotubes in polyurethane resin applied on aluminum
- Engineering and processing
- Influence of shrinkage of polymer on the stationarity of propagation of frontal polymerization heat waves
- Influence of titanium oxide-based colourants on the morphological and tribomechanical properties of injection-moulded polyoxymethylene spur gears