Investigation of the properties of polystyrene-based wood plastic composites: effects of the flame retardant loading and magnetic fields
-
Chenwu Liang
, Dan Wang
Abstract
Polystyrene-based wood plastic composites (WPCs) containing ammonium polyphosphate (APP) and iron (Fe) powder were prepared in this work by solution blending with the aid of an alternating magnetic field. The mechanical, electrical, thermal and fire performances of the WPCs were analyzed through mechanical testing, thermogravimetry and CONE calorimeter. The addition of Fe powder decreased the tensile strength and increased the impact strength. The APP promoted the formation of sufficient char on the material’s surface and enhanced the flame retardant properties. Furthermore, an alternating magnetic field was used to align the Fe powders. After the magnetic treatment, the electrical conductivity and thermal properties were found to increase considerably compared with those without treatment. The Agari model presented the most reasonable prediction of thermal conductivity as a function of Fe content among three classical thermal conduction models. According to the morphological observations, the iron particles in the composites tended to rearrange along the direction of the magnetic field after treatment, resulting in the enhancement of both thermal and electrical conductivities. The prepared WPCs in this study exhibited good flame retardant properties together with the acceptable mechanical properties of the composites.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 51203002
Award Identifier / Grant number: 51273001
Funding statement: The authors are gratefully indebted to the National Natural Science Foundation of China (Grant Nos. 51203002 and 51273001, Funder Id: http://dx.doi.org/10.13039/501100001809) and the “211 Project” (Grant Nos. ZLTS2015059, 201510357142, J01005113 and J18515262) of Anhui University. The financial support from the Institute of High Performance Rubber Materials and Products (Hefei) and Collaborative Innovation Center for Petrochemical New Materials (Anqing) is also acknowledged.
Conflict of interest statement: The authors declare no conflict of interests.
References
[1] Turku I, Keskisaari A, Kärki T, Puurtinen A, Marttila P. Compos. Struct. 2017, 161, 469–476.10.1016/j.compstruct.2016.11.073Search in Google Scholar
[2] Masri T, Ounis H, Sedira L, Kaci A, Benchabane A. Constr. Build. Mater. 2018, 164, 410–418.10.1016/j.conbuildmat.2017.12.197Search in Google Scholar
[3] Bai G, Guo CG, Li LP. Constr. Build. Mater. 2014, 50, 148–153.10.1016/j.conbuildmat.2013.09.028Search in Google Scholar
[4] Wang J, Dong J, Zhang JW, Zhu BD, Cui DL. J. Polym. Eng. 2017, 38, 157–166.10.1515/polyeng-2016-0432Search in Google Scholar
[5] Ratanwila T, Taneerat K. Constr. Build. Mater. 2018, 172, 349–357.10.1016/j.conbuildmat.2018.03.266Search in Google Scholar
[6] Yeh SK, Agarwal S, Gupta RK. Compos. Sci. Technol. 2009, 69, 2225–2230.10.1016/j.compscitech.2009.06.007Search in Google Scholar
[7] Clemons C. Composites Part A 2010, 41, 1559–1569.10.1016/j.compositesa.2010.07.002Search in Google Scholar
[8] Ponikiewski T, Golaszewski J. Procedia Eng. 2013, 65, 290–295.10.1016/j.proeng.2013.09.045Search in Google Scholar
[9] Yeh SK, Gupta RK. Composites Part A. 2008, 39, 1694–1699.10.1016/j.compositesa.2008.07.013Search in Google Scholar
[10] Zhou L, Guo CG, Li LP. J. Appl. Polym. Sci. 2011, 122, 849–855.10.1002/app.34069Search in Google Scholar
[11] Glor M. J. Electrostat. 2009, 67, 242–246.10.1016/j.elstat.2009.01.016Search in Google Scholar
[12] Zhou XD, Sun YF, Chen YC, Sun B. Polym. Korea. 2018, 42, 157–166.10.7317/pk.2018.42.2.157Search in Google Scholar
[13] Fu SY, Song PG, Yang HT, Jin YM, Lu FZ, Ye JW, Wu Q. J. Mater. Sci. 2010, 45, 3520–3528.10.1007/s10853-010-4394-7Search in Google Scholar
[14] Seefeldt H, Braun U, Wagner MH. Macromol. Chem. Phys. 2012, 213, 2370–2377.10.1002/macp.201200119Search in Google Scholar
[15] Arao Y, Nakamura S, Tomita Y, Takakuwa K, Umemura T, Tanaka T. Polym. Degrad. Stab. 2014, 100, 79–85.10.1016/j.polymdegradstab.2013.12.022Search in Google Scholar
[16] Stark NM, White RH, Mueller SA, Osswald TA. Polym. Degrad. Stab. 2010, 95, 1903–1910.10.1016/j.polymdegradstab.2010.04.014Search in Google Scholar
[17] Maldas D, Kokta BV, Raj RG, Daneault C. Polymer. 1988, 29, 1255–1265.10.1016/0032-3861(88)90053-5Search in Google Scholar
[18] Maldas D, Kokta BV. Compos. Sci. Technol. 1989, 36, 167–182.10.1016/0266-3538(89)90086-9Search in Google Scholar
[19] Singha AS, Rana RK. Mater. Des. 2012, 41, 289–297.10.1016/j.matdes.2012.05.001Search in Google Scholar
[20] Yu FL, Xu FJ, Song YM, Fang YQ, Zhang ZJ, Wang QW, Wang FQ. Polym. Compos. 2017, 38, 767–773.10.1002/pc.23636Search in Google Scholar
[21] Bishay IK, Messieh AE, Mansour SH. Mater. Des. 2011, 32, 62–68.10.1016/j.matdes.2010.06.035Search in Google Scholar
[22] Zhou WY, Zuo J, Ren WN. Composites Part A. 2012, 43, 658–664.10.1016/j.compositesa.2011.11.024Search in Google Scholar
[23] Shen MX, Cui YX, He J, Zhang YM. Int. J. Miner. Metall. Mater. 2011, 18, 623–631.10.1007/s12613-011-0487-9Search in Google Scholar
[24] Nielsen LE. J. Appl. Phys. 1970, 41, 4626–4627.10.1063/1.1658506Search in Google Scholar
[25] Agari Y, Uno T. J. Appl. Polym. Sci. 1986, 32, 5705–5712.10.1002/app.1986.070320702Search in Google Scholar
[26] Bruggeman DAG. Ann. Phys. 1935, 416, 636–664.10.1002/andp.19354160705Search in Google Scholar
[27] Zhou H, Zhang SM, Yang MS. Compos. Sci. Technol. 2007, 67, 1035–1040.10.1016/j.compscitech.2006.06.004Search in Google Scholar
[28] Gaska K, Kmita G, Rybak A, Sekula R, Goc K, Kapusta C. J. Mater. Sci. 2015, 50, 2510–2516.10.1007/s10853-014-8809-8Search in Google Scholar
[29] Kim K, Kim J. Composites Part B. 2016, 93, 67–74.10.1016/j.compositesb.2016.02.052Search in Google Scholar
[30] Boudenne A, Mamunya Y, Levchenko V, Garnier B, Lebedev E. Eur. Polym. J. 2015, 63, 11–19.10.1016/j.eurpolymj.2014.11.032Search in Google Scholar
[31] Poletto M, Dettenborn J, Zeni M, Zattera AJ. Waste Manage. 2011, 31, 779–784.10.1016/j.wasman.2010.10.027Search in Google Scholar PubMed
[32] Kim M, Lee MJ, Ghim HD. Polym. Korea. 2017, 41, 7–12.10.7317/pk.2017.41.1.7Search in Google Scholar
[33] Chanhoun M, Padonou S, Adjovi EC, Olodo E. Constr. Build. Mater. 2018, 167, 936–941.10.1016/j.conbuildmat.2018.02.080Search in Google Scholar
[34] Poletto M, Zeni M, Zattera AJ. J. Thermoplast. Compos. Mater. 2012, 25, 821–833.10.1177/0892705711413627Search in Google Scholar
[35] Kaseem M, Hamad K, Deri F, Ko YG. J. Wood Chem. Technol. 2017, 37, 251–260.10.1080/02773813.2016.1272127Search in Google Scholar
[36] Zhang ZS, Wang CG, Meng YZ, Mai KC. Composites Part A. 2012, 43, 189–197.10.1016/j.compositesa.2011.10.008Search in Google Scholar
[37] Yan HB, Hong Y, Lv Q, Zhang YH. Polym. Mater. Sci. Eng. 2017, 33, 164–169.Search in Google Scholar
[38] Zhang XJ. Chin. J. Chem. 2007, 28, 44–46.10.1093/frebul/ktm007Search in Google Scholar
[39] Jin C. Dissertation of the East China University of Science and Technology, Shanghai, 2016.Search in Google Scholar
[40] Jin FL, Pang QQ, Zhang TY, Park SJ. Ind. Eng. Chem. 2015, 32, 77–84.10.1016/j.jiec.2015.07.021Search in Google Scholar
[41] Yan YW, Chen L, Jian RK, Kong S, Wang YZ. Polym. Degrad. Stab. 2012, 97, 1423–1431.10.1016/j.polymdegradstab.2012.05.013Search in Google Scholar
[42] Jeencham R, Suppakarn N, Jarukumjorn K. Composites Part B. 2014, 56, 249–253.10.1016/j.compositesb.2013.08.012Search in Google Scholar
[43] Zhang ZX, Zhang J, Lu BX, Xin ZX, Kang CK, Kim JK. Composites Part B. 2012, 43, 150–158.10.1016/j.compositesb.2011.06.020Search in Google Scholar
[44] Fang YQ, Wang QW, Guo CG, Song YM, Cooper PA. J. Anal. Appl. Pyrol. 2013, 100, 230–236.10.1016/j.jaap.2012.12.028Search in Google Scholar
[45] Min K, Yang B, Miao JB, Xia R, Chen P, Qian JS. J. Macromol. Sci. Part B: Phys. 2013, 52, 1115–1127.10.1080/00222348.2012.755438Search in Google Scholar
[46] Ismadi, Yuwono AH, Astutiningsih S, Subyakto. Macromol. Symp. 2013, 353, 102–107.10.1002/masy.201550313Search in Google Scholar
[47] Zhang LL, Yang B, Xia R, Qian JS, Cao M, Miao JB, Su LF, Chen P. Polym. Compos. 2019, 40, 88–101.Search in Google Scholar
[48] Russell HW. J. Am. Ceram. Soc. 1935, 18, 1–5.10.1111/j.1151-2916.1935.tb19340.xSearch in Google Scholar
[49] Agari Y, Ueda A, Nagai S. J. Appl. Polym. Sci. 1991, 42, 1665–1669.10.1002/app.1991.070420621Search in Google Scholar
[50] Azeem S, Zain–ul–Abdein M. Int. J. Eng. Sci. 2012, 52, 30–40.10.1016/j.ijengsci.2011.12.002Search in Google Scholar
[51] Levy F L. Int. J. Refrig. 1981, 4, 223–225.10.1016/0140-7007(81)90053-0Search in Google Scholar
[52] Luo XB, Hu R, Liu S, Wang K. Prog. Energy Combust. Sci. 2016, 56, 1–32.10.1016/j.pecs.2016.05.003Search in Google Scholar
[53] Gaxiola DL, Keith JM, King JA, Johnson BA. J. Appl. Polym. Sci. 2009, 114, 3261–3267.10.1002/app.30484Search in Google Scholar
[54] Song JP, Tian KY, Ma LX, Li W, Yao SC. Int. J. Heat Mass Transfer. 2019, 137, 187–191.10.1016/j.ijheatmasstransfer.2019.03.078Search in Google Scholar
[55] Yuan DB, Gao YF, Guo ZX, Yu J. J. Appl. Polym. Sci. 2017, 134, 45371.10.1002/app.45371Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Chitosan as an emerging object for biological and biomedical applications
- Investigation of the properties of polystyrene-based wood plastic composites: effects of the flame retardant loading and magnetic fields
- An attempt to correlate the physical properties of fossil and subfossil resins with their age and geographic location
- Effect of heat treatment on the thermophysical properties of copper-powder-filled polycarbonate and polycarbonate containing paraffin
- Preparation and assembly
- Preparation of hydrophilic reactive polyurethane and its application of anti-water erodibility in ecological restoration
- Antimicrobial gelatin/sericin/clay films for packaging of hygiene products
- Functional sol-gel coated electrospun polyamide 6,6/ZnO composite nanofibers
- Influence of the incorporation of different chemically functionalized carbon nanotubes in polyurethane resin applied on aluminum
- Engineering and processing
- Influence of shrinkage of polymer on the stationarity of propagation of frontal polymerization heat waves
- Influence of titanium oxide-based colourants on the morphological and tribomechanical properties of injection-moulded polyoxymethylene spur gears
Articles in the same Issue
- Frontmatter
- Material properties
- Chitosan as an emerging object for biological and biomedical applications
- Investigation of the properties of polystyrene-based wood plastic composites: effects of the flame retardant loading and magnetic fields
- An attempt to correlate the physical properties of fossil and subfossil resins with their age and geographic location
- Effect of heat treatment on the thermophysical properties of copper-powder-filled polycarbonate and polycarbonate containing paraffin
- Preparation and assembly
- Preparation of hydrophilic reactive polyurethane and its application of anti-water erodibility in ecological restoration
- Antimicrobial gelatin/sericin/clay films for packaging of hygiene products
- Functional sol-gel coated electrospun polyamide 6,6/ZnO composite nanofibers
- Influence of the incorporation of different chemically functionalized carbon nanotubes in polyurethane resin applied on aluminum
- Engineering and processing
- Influence of shrinkage of polymer on the stationarity of propagation of frontal polymerization heat waves
- Influence of titanium oxide-based colourants on the morphological and tribomechanical properties of injection-moulded polyoxymethylene spur gears