An attempt to correlate the physical properties of fossil and subfossil resins with their age and geographic location
-
Paweł Stach
, Gintarė Martinkutė
, Petras Šinkūnas , Lucyna Natkaniec-Nowak , Przemysław Drzewicz , Beata Naglik and Maxim Bogdasarov
Abstract
Testing of the correlation between physical properties of natural resins such as microhardness, density and UV-excited fluorescence emission with their age, geological conditions, botanical and geographical origin and chemical structure was performed. These physical parameters, especially microhardness, are the result of resins fossilization processes like cross-linking and polymerizations of compounds present in the fossils. In addition, hardening of the resins may be also an effect of miscellaneous chemical processes induced by various environmental, biological and geological conditions. The principal component analysis found that the correlation of microhardness, density and fluorescence intensity with the resin age is quite low. The results suggest that variability of physical properties is caused by geographic location and locally occurring geological conditions. The physical properties of natural resins are most strongly correlated with chemical structure and geographic location. The resins with higher microhardness values come from marine environment depositions. The same trend was observed for resins affected by volcanic activity. Moreover, high fluorescence intensity was also observed for resins affected by above mentioned geological conditions. However, the density values of tested resins revealed the lowest correlation with their age, botanical source and geological history.
Funding source: AGH University of Science and Technology
Award Identifier / Grant number: 11.11.140.158
Award Identifier / Grant number: 15.11.140.208
Funding source: The Polish Geological Institute-National Research Institute
Award Identifier / Grant number: 61-2816-1801-000
Funding statement: The authors would like to thank Anselm Krumbiegel and Kazimieras Mizgiris for samples of resins for the research. This study was supported by research grant numbers 11.11.140.158 and 15.11.140.208 (AGH University of Science and Technology; funder id: https://doi.org/10.13039/501100007751) and research project No. 61-2816-1801-000 (The Polish Geological Institute-National Research Institute).
References
[1] Carrow JK, Gaharwar AK. Macromol. Chem. Phys. 2015, 216, 248–264.10.1002/macp.201400427Search in Google Scholar
[2] Gaidukovs S, Lyashenko I, Rombovska J, Gaidukova G. Text. Res. J. 2016, 86, 2127–2139.10.1177/0040517515621130Search in Google Scholar
[3] Gold D, Hazen B, Miller W. Org. Geochem. 1999, 30, 971–983.10.1016/S0146-6380(99)00083-2Search in Google Scholar
[4] Gough LJ, Mills JS. Nature 1972, 239, 527–528.10.1038/239527a0Search in Google Scholar
[5] Grimalt JO, Simoneit BRT, Hatcher PG, Nissenbaum A. Org. Geochem. 1988, 13, 677–690.10.1016/0146-6380(88)90089-7Search in Google Scholar
[6] Langenheim JH. Plant resins. Chemistry, Evolution, Ecology, and Ethnobotany. Timber Press, Cambridge: Portland, 2003.Search in Google Scholar
[7] Mills JS, White R, Gough LJ. Chem. Geol. 1984, 47, 15–39.10.1016/0009-2541(84)90097-4Search in Google Scholar
[8] Menor-Salván C, Simoneit BR, Ruiz-Bermejo M, Alonso J. Org. Geochem. 2016, 93, 7–21.10.1016/j.orggeochem.2015.12.010Search in Google Scholar
[9] Schlüter T, Von Gnielinski F. National Museum of Tanzania Occasional Papers 1987, 8, 1–32.Search in Google Scholar
[10] Anderson KB. Org. Geochem. 1997, 25, 251–253.10.1016/S0146-6380(96)00137-4Search in Google Scholar
[11] Kosmowska-Ceranowicz B. Polski Jubiler 2001, 1, 24–27 [in Polish].Search in Google Scholar
[12] Kosmowska-Ceranowicz B. Bursztyn w Polsce i na świecie [Amber in Poland and in the world], 1st ed., Wydawnictwa Uniwersytetu Warszawskiego: Warsaw, 2012.10.31338/uw.9788323510222Search in Google Scholar
[13] Anderson KB. In Amber, Resinite and Fossil Resins, Anderson KB, Crelling J, Eds., Am Chem Soc.: Washington, 1995, pp. 105–129.10.1021/bk-1995-0617.ch006Search in Google Scholar
[14] Bosselaers J, Dierick M, Cnudde V, Masschaele B, Van Hoorebeke L, Jacobs P. Zootaxa 2010, 2427, 25–35.10.11646/zootaxa.2427.1.3Search in Google Scholar
[15] Anderson KB, Winans EE, Botto RE. Org. Geochem. 1992, 18, 829–841.10.1016/0146-6380(92)90051-XSearch in Google Scholar
[16] Bogdasarov MA. Geol. Ore Deposits 2007, 49, 630–637.10.1134/S1075701507070215Search in Google Scholar
[17] Bogdasarov MA. Amber and Others Fossil Resins of Eurasia, BrSU A.S. Pushkin: Brest, 2010.Search in Google Scholar
[18] Kosmowska-Ceranowicz B. Estudios del Museo de Ciencias Naturales de Alava 1999, 14, 73–117.Search in Google Scholar
[19] Ragazzi E, Schmidt AR. In Encyclopedia of Geobiology, Reitner J, Thiel V, Eds., Springer, Netherlands, 2011, pp. 24–36.10.1007/978-1-4020-9212-1_9Search in Google Scholar
[20] Roghi G, Ragazzi E, Gianolla P. Palaios 2006, 21, 143–154.10.2110/palo.2005.p05-68Search in Google Scholar
[21] Zherikhin VV, Eskov KY. Estudios del Museo de Ciencias Naturales de Álava 1999, 14, 119–131.Search in Google Scholar
[22] Kraemer MMS, Kraemer AS, Stebner F, Bickel DJ, Rust J. PLoS One 2015, 10, e0118820.10.1371/journal.pone.0118820Search in Google Scholar
[23] Larson DW. Can. J. Bot. 1978, 56, 2119–2123.10.1139/b78-253Search in Google Scholar
[24] Phillips TL, Peppers RA. Int. J. Coal Geol. 1984, 3, 205–255.10.1016/0166-5162(84)90019-3Search in Google Scholar
[25] Sinitsin VM. Drevnie klimaty Evrazii: paleogen i neogen [Ancient Climates of Eurasia: Palaeogene and Neogene]. Part 1, Leningr. Gos. Univ.: Lenningrad, 1965 [in Russian].Search in Google Scholar
[26] Wolfe AP, Tappert R, Muehlenbachs K, Boudreau M, McKellar RC, Basinger JF, Garrett A. Proc. R. Soc. Lond. Ser. B 2009, 276, 3403–3412.10.1098/rspb.2009.0806Search in Google Scholar PubMed PubMed Central
[27] Ziegler AM, Raymond AL, Gierlowski TC, Horrell MA, Rowley DB, Lottes AL. J. Geol. Soc. 1987, 32, 25–49.10.1144/GSL.SP.1987.032.01.04Search in Google Scholar
[28] Kelly PM, Sear CB. Nature 1984, 311, 340–343.10.1056/NEJM198408023110534Search in Google Scholar
[29] Kosmowska-Ceranowicz B, Sachanbiński M, Łydżba-Kopczyńska B. Baltica 2017, 30, 55–60.10.5200/baltica.2017.30.06Search in Google Scholar
[30] Mitchell AHG. In Tectonic Evolution of the Tethyan Region, Sengör AMC, Ed., Springer: Dordrecht, 1989, pp. 567–583.10.1007/978-94-009-2253-2_24Search in Google Scholar
[31] Mitchell AHG. J. Geol. Soc. 1993, 150, 1089–1102.10.1144/gsjgs.150.6.1089Search in Google Scholar
[32] Cunningham A, West PR, Hammond GS, Langenheim JH. Phytochemistry 1977, 16, 1442–1443.10.1016/S0031-9422(00)88803-2Search in Google Scholar
[33] Jehlička J, Jorge Villar SE, Edwards HGM. J. Raman Spectrosc. 2004, 35, 761–767.10.1002/jrs.1191Search in Google Scholar
[34] Naglik B, Kosmowska-Ceranowicz B, Natkaniec-Nowak L, Drzewicz P, Dumańska-Słowik M, Matusik J, Wagner M, Milovsky R, Stach P, Szyszka A. Minerals 2018, 8, 95–107.10.3390/min8030095Search in Google Scholar
[35] Winkler W, Kirchner EC, Asenbaum A, Musso MA. J. Raman Spectrosc. 2001, 32, 59–63.10.1002/1097-4555(200101)32:1<59::AID-JRS670>3.0.CO;2-DSearch in Google Scholar
[36] Savkevich SS. Mineralogicheskiy Sbornik 1967, 21, 198–204.10.1038/bjc.1967.21Search in Google Scholar
[37] Poinar Jr GO. Life in Amber, Stanford University Press: Palo Alto, 1992.10.1515/9781503623545Search in Google Scholar
[38] Popkova TN. Zapiski Rossiyskogo mineralogicheskogo obshchestva 1984, 113, 128–133 [in Russian].Search in Google Scholar
[39] Rice PC. Amber. The Golden Gem of the Ages, Kosciusko Foundation: New York, 1987.Search in Google Scholar
[40] Savkevich SS. Phys. Chem. Miner. 1981, 7, 1–4.10.1007/BF00308192Search in Google Scholar
[41] Matuszewska A. Bursztyn (sukcynit), inne żywice kopalne, subfosylne i współczesne [Amber (Succinite) and other modern, subfossil and fossil resins)], Oficyna Wydawnicza Wacław Walasek: Katowice, 2010 [in Polish].Search in Google Scholar
[42] Matuszewska A, Gołąb A. Bursztynisko 2008, 31, 56–61.10.1097/01.wnf.0000265973.42277.c7Search in Google Scholar
[43] Matuszewska A, Gołąb A, Salomon A. Polski Jubiler 2002, 1, 26–29 [in Polish].Search in Google Scholar
[44] Matuszewska A, John A. Acta Chromatogr. 2004, 14, 82–91.10.1055/s-2003-814833Search in Google Scholar
[45] Bellani V, Giulotto E, Linati L, Sacchi D. J. Appl. Phys. 2005, 97, 016101.10.1063/1.1829395Search in Google Scholar
[46] Chekryzhov IY, Nechaev VP, Kononov VV. Int. J. Coal Geol. 2014, 132, 6–12.10.1016/j.coal.2014.07.013Search in Google Scholar
[47] Bukejs A, Legalov AA. Paleontol. J. 2017, 51, 196–202.10.1134/S003103011702006XSearch in Google Scholar
[48] McCoy VE, Boom A, Kraemer MMS, Gabbott SE. Org. Geochem. 2017, 113, 43–54.10.1016/j.orggeochem.2017.08.005Search in Google Scholar
[49] Hall R, van Hattum MWA, Spakman W. Tectonophysics 2008, 451, 366–389.10.1016/j.tecto.2007.11.058Search in Google Scholar
[50] Liechti P, Roe FW, Haile NS. The Geology of Sarawak, Brunei, and the Western Part of North Borneo, 1st ed., British Geological Survey Bulletin, 1960.Search in Google Scholar
[51] Iturralde-Vinent MA. Caribb. J. Sci. 2001, 37, 141–167.Search in Google Scholar
[52] Iturralde-Vinent MA, MacPhee RDE. Science 1996, 273, 1850–1852.10.1126/science.273.5283.1850Search in Google Scholar
[53] Poinar Jr GO. Ann. Soc. Entomol. Fr. 2010, 46, 23–52.10.1080/00379271.2010.10697637Search in Google Scholar
[54] Bachmann R. The Caribbean plate and the Question of its Formation, Institute of Geology, University of Mining and Technology, Department of Tectonophysics: Freiberg, 2001.Search in Google Scholar
[55] Kraemer MMS. In Biodiversity of Fossils in Amber from the Major World Deposits, Penney D, Ed., Siri Scientific Press: Manchester, 2010, pp. 42–56.Search in Google Scholar
[56] Poinar Jr GO, Brown AE. Bot. J. Linn. Soc. 2002, 139, 125–132.10.1046/j.1095-8339.2002.00053.xSearch in Google Scholar
[57] Crow MJ, Barber AJ, Milsom JS, Eds., Sumatra: Geology, Resources and Tectonic Evolution, Geological Society Memoirs, 2004.Search in Google Scholar
[58] Adiwidjaja P, Decoster GL. Pre-Tertiary Paleotopography and Related Sedimentation in South Sumatra, Indonesian Petroleum Association Second Annual Convention, June, 1973.10.29118/IPA.722.89.103Search in Google Scholar
[59] Brackman W, Spaargaren K, Van Dongen JPCM, Couperus PA, Bakker F. Geochim. Cosmochim. Acta 1984, 48, 2483–2487.10.1016/0016-7037(84)90299-0Search in Google Scholar
[60] Lambert JB, Levy AJ, Santiago-Blay JA, Wu Y. Life: The Excitement of Biology 2013, 1, 136–155.10.9784/LEB1(3)Lambert.02Search in Google Scholar
[61] Yamamoto S, Otto A, Krumbiegel G, Simoneit BRT. Rev. Palaeobot. Palyno. 2006, 140, 27–49.10.1016/j.revpalbo.2006.02.002Search in Google Scholar
[62] Perkovsky EE, Zosimovich VY, Vlaskin AP. In Biodiversity of Fossils in Amber from the Major World Deposits, Penney D, Ed., Siri Scientific Press: Manchester, 2010, pp. 116–136.Search in Google Scholar
[63] Wang B, Rust J, Engel MS, Szwedo J, Dutta S, Nel A, Fan Y, Meng F, Shi G, Jarzembowski EA, Wappler T, Stebner F, Fang Y, Mao L, Zheng D, Zhang H. Curr. Biol. 2014, 24, 1606–1610.10.1016/j.cub.2014.05.048Search in Google Scholar
[64] Zhang Q, Nel A, Azar D, Wang B. Alcheringa 2016, 40, 366–372.10.1080/03115518.2016.1144952Search in Google Scholar
[65] Brasero N, Nel A, Michez D. Denisia 2009, 26, 41–52.Search in Google Scholar
[66] McKellar RC, Wolfe AP, Penney D. In Biodiversity of Fossils in Amber from the Major World Deposits, Penney D, Ed., Siri Scientific Press: Manchester, 2010, pp. 96–113.Search in Google Scholar
[67] Oda H. AAPG International Conference. 2003, 1–5.Search in Google Scholar
[68] Hashimoto M, Ed., Geology of Japan, Springer Science & Business Media, 1991.Search in Google Scholar
[69] Aber SW. 1996–2004. Geographic Occurrence of Amber. http://academic.emporia.edu/abersusa/geograph.htm, [Accessed 5 July 2018].Search in Google Scholar
[70] Cruickshank RD, Ko K. J. Asian Earth Sci. 2003, 21, 441–455.10.1016/S1367-9120(02)00044-5Search in Google Scholar
[71] Shi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, Lei W, Li Q, Li X. Cretaceous Res. 2012, 37, 155–163.10.1016/j.cretres.2012.03.014Search in Google Scholar
[72] Coty D, Lebon M, Nel A. Ann. Soc. Entomol. Fr. 2016, 52, 161–166.10.1080/00379271.2016.1230477Search in Google Scholar
[73] Schmidt AR, Perrichot V, Svojtka M, Anderson KB, Belete KH, Bussert R, Dörfelt H, Jancke S, Mohr B, Mohrmann E, Nascimbene PC, Nel A, Nel P, Ragazzi E, Roghi G, Saupe EE, Schmidt K, Schneider H, Selden PA, Vávra N. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 7329–7334.10.1073/pnas.1000948107Search in Google Scholar PubMed PubMed Central
[74] Azar D, Gèze R, Acra F. In Biodiversity of Fossils in Amber from the Major World Deposits, Penney D, Ed., Siri Scientific Press: Manchester, 2010, pp. 271–298.Search in Google Scholar
[75] Kaddumi HF. Amber of Jordan: The Oldest Prehistoric Insects in Fossilized Resin, Eternal River Museum of Natural History: Amman, 2007.Search in Google Scholar
[76] Poinar Jr GO. Proc. Entomol. Soc. Wash. 2008, 110, 1251–1252.10.4289/0013-8797-110.4.1251Search in Google Scholar
[77] Alvarez W, Asaro F, Michel HV, Alvarez LW. Science 1982, 216, 886–888.10.1126/science.216.4548.886Search in Google Scholar PubMed
[78] Vonhof HB, Smit J, Brinkhuis H, Montanari A, Nederbragt AJ. Geology 2000, 28, 687–690.10.1130/0091-7613(2000)28<687:GCABEL>2.0.CO;2Search in Google Scholar
[79] Kawamura T, Koshino H, Nakamura T, Nagasawa Y, Nanao H, Shirai M, Uesugi S, Ohno M, Kimura K. Org. Geochem. 2018, 120, 12–18.10.1016/j.orggeochem.2018.02.014Search in Google Scholar
[80] Mallick M, Dutta S, Greenwood PF. Int. J. Coal Geol. 2014, 121, 129–136.10.1016/j.coal.2013.11.013Search in Google Scholar
[81] Bechtel A, Chekryzhov IY, Nechaev VP, Kononov VV. Int. J. Coal Geol. 2016, 167, 176–183.10.1016/j.coal.2016.10.005Search in Google Scholar
[82] Liu Y, Shi G, Wang S. Gems Gemol. 2014, 50, 2–8.10.5741/GEMS.50.1.2Search in Google Scholar
[83] Kosmowska-Ceranowicz B. Polski Jubiler 2000, 1, 18–20 [in Polish].Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Chitosan as an emerging object for biological and biomedical applications
- Investigation of the properties of polystyrene-based wood plastic composites: effects of the flame retardant loading and magnetic fields
- An attempt to correlate the physical properties of fossil and subfossil resins with their age and geographic location
- Effect of heat treatment on the thermophysical properties of copper-powder-filled polycarbonate and polycarbonate containing paraffin
- Preparation and assembly
- Preparation of hydrophilic reactive polyurethane and its application of anti-water erodibility in ecological restoration
- Antimicrobial gelatin/sericin/clay films for packaging of hygiene products
- Functional sol-gel coated electrospun polyamide 6,6/ZnO composite nanofibers
- Influence of the incorporation of different chemically functionalized carbon nanotubes in polyurethane resin applied on aluminum
- Engineering and processing
- Influence of shrinkage of polymer on the stationarity of propagation of frontal polymerization heat waves
- Influence of titanium oxide-based colourants on the morphological and tribomechanical properties of injection-moulded polyoxymethylene spur gears
Articles in the same Issue
- Frontmatter
- Material properties
- Chitosan as an emerging object for biological and biomedical applications
- Investigation of the properties of polystyrene-based wood plastic composites: effects of the flame retardant loading and magnetic fields
- An attempt to correlate the physical properties of fossil and subfossil resins with their age and geographic location
- Effect of heat treatment on the thermophysical properties of copper-powder-filled polycarbonate and polycarbonate containing paraffin
- Preparation and assembly
- Preparation of hydrophilic reactive polyurethane and its application of anti-water erodibility in ecological restoration
- Antimicrobial gelatin/sericin/clay films for packaging of hygiene products
- Functional sol-gel coated electrospun polyamide 6,6/ZnO composite nanofibers
- Influence of the incorporation of different chemically functionalized carbon nanotubes in polyurethane resin applied on aluminum
- Engineering and processing
- Influence of shrinkage of polymer on the stationarity of propagation of frontal polymerization heat waves
- Influence of titanium oxide-based colourants on the morphological and tribomechanical properties of injection-moulded polyoxymethylene spur gears