Effects of grafting parameters on the properties of proton exchange membranes based on sulfo-functionalized porous silicon for micro direct methanol fuel cells
Abstract
3-Mercaptopropyltrimethoxysilane [MPTMS, (CH3O)3SiCH2CH2CH2SH] can be grafted to porous silicon via a simple chemical grafting method and then sulfonated to prepare a proton exchange membrane (PEM) for application in micro direct methanol fuel cells (μDMFCs). The concentration of MPTMS and the pH of the solvent, which is varied by adding glacial acetic acid (GAA), play important roles in the chemical grafting process. In this work, PEMs based on sulfo-functionalized porous silicon were prepared at MPTMS concentrations ranging from 10 wt.% to 90 wt.% and GAA concentrations ranging from 0 wt.% to 10 wt.% to study the effects of grafting parameters on the proton transport properties of PEMs. Electrochemical impedance spectroscopy shows that the proton conductivity of the PEMs can be tuned by changing the MPTMS and GAA concentrations, and it reaches a maximum of 0.082 S/cm at an MPTMS concentration of 30 wt.% and a GAA concentration of 5 wt.%. The effects of MPTMS and GAA concentrations on the properties of PEMs are discussed in the context of two competitive reaction pathways of MPTMS molecules: dehydration condensation with silanols on the walls of porous silicon and self-polymerization.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 61704157
Award Identifier / Grant number: 2015BSJJ055
Funding statement: This work was supported by the National Natural Science Foundation of China (No. 61704157, Funder Id: http://dx.doi.org/10.13039/501100001809) and the Doctoral Research Foundation of Zhengzhou University of Light Industry (No. 2015BSJJ055).
References
[1] Kamarudin SK, Daud WRW, Ho SL, Hasran UA. J. Power Sources 2007, 163, 743–754.10.1016/j.jpowsour.2006.09.081Suche in Google Scholar
[2] Torres N, Santander J, Esquivel JP, Sabate N, Figueras E, Ivanov P, Fonseca L, Gràcia I, Cané C. Sens. Actuators B 2008, 132, 540–544.10.1016/j.snb.2007.11.035Suche in Google Scholar
[3] Zhang Q, Wang X, Zhong L, Zou Ya, Qiu X, Liu L. Sens. Actuators A 2009, 154, 247–254.10.1016/j.sna.2008.07.008Suche in Google Scholar
[4] Lu Y, Reddy RG. Int. J. Hydrog. Energy 2011, 36, 822–829.10.1016/j.ijhydene.2010.10.029Suche in Google Scholar
[5] Zhou Ya, Wang X, Guo X, Qiu X, Liu L. Int. J. Hydrog. Energy 2012, 37, 967–976.10.1016/j.ijhydene.2011.03.086Suche in Google Scholar
[6] Wang M, Liu L, Wang X. Sens. Actuators B 2017, 253, 621–629.10.1016/j.snb.2017.06.173Suche in Google Scholar
[7] Ataee-Esfahani H, Imura M, Yamauchi Y. Angew. Chem. Int. Ed. Engl. 2013, 52, 13611–13615.10.1002/anie.201307126Suche in Google Scholar PubMed
[8] Li C, Sato T, Yamauchi Y. Angew. Chem. Int. Ed. Engl. 2013, 52, 8050–8053.10.1002/anie.201303035Suche in Google Scholar PubMed
[9] Peng H-C, Chen P-H, Chen H-W, Chieng C-C, Yeh T-K, Pan C, Tseng F-G. J. Power Sources 2010, 195, 7349–7358.10.1016/j.jpowsour.2010.05.007Suche in Google Scholar
[10] Wu YS, Fang IC, Chieng CC, Tseng FG. 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013, 2013, Taipei, Taiwan. IEEE, 885–888.Suche in Google Scholar
[11] Fu B-R, Ting Y-C, Lee C-F, Huang Y-J, Su Y-C, Tseng F-G, Pan C. Int. J. Hydrog. Energy 2016, 41, 18610–18620.10.1016/j.ijhydene.2016.08.023Suche in Google Scholar
[12] Wu Z, Wang X, Liu L. J. Microelectromech. Syst. 2015, 24, 207–215.10.1109/JMEMS.2014.2327163Suche in Google Scholar
[13] Pichonat T, Gauthier-Manuel B. Microsyst. Technol. 2006, 12, 330–334.10.1007/s00542-005-0072-0Suche in Google Scholar
[14] Torres-Herrero N, Santander J, Sabatéé N, Cané C, Trifonov T, Rodriguez A, Alcubilla R. The Eighth International Conference on Advanced Semiconductor Devices and Microsystems. 2010, Smolenice, Slovakia. IEEE, 263–266.10.1109/ASDAM.2010.5667011Suche in Google Scholar
[15] Pichonat T, Gauthier-Manuel B. J. Power Sources 2006, 154, 198–201.10.1016/j.jpowsour.2005.03.215Suche in Google Scholar
[16] Pichonat T, Gauthier-Manuel B. Fuel Cells 2006, 6, 323–325.10.1002/fuce.200500261Suche in Google Scholar
[17] Chen JH, Asano M, Yamaki T, Yoshida M. J. Membr. Sci. 2005, 256, 38–45.Suche in Google Scholar
[18] Hamada T, Fukasawa H, Hasegawa S, Miyashita A, Maekawa Y. Int. J. Hydrog. Energy 2016, 41, 18621–18630.10.1016/j.ijhydene.2016.08.039Suche in Google Scholar
[19] Chen J, Asano M, Maekawa Y, Sakamura T, Kubota H, Yoshida M. J. Membr. Sci. 2006, 283, 373–379.10.1016/j.memsci.2006.07.008Suche in Google Scholar
[20] Chen J, Asano M, Yoshida M, Maekawa Y. J. Appl. Polym. Sci. 2006, 101, 2661–2667.10.1002/app.23909Suche in Google Scholar
[21] Chen JH, Asano M, Yamaki T, Yoshida M. J. Membr. Sci. 2006, 269, 194–204.10.1016/j.memsci.2005.06.035Suche in Google Scholar
[22] Chen J, Asano M, Maekawa Y, Yoshida M. J. Membr. Sci. 2007, 296, 77–82.10.1016/j.memsci.2007.03.017Suche in Google Scholar
[23] Albert A, Lochner T, Schmidt TJ, Gubler L. ACS Appl. Mater. Interfaces 2016, 8, 15297–15306.10.1021/acsami.6b03050Suche in Google Scholar
[24] Sproll V, Nagy G, Gasser U, Embs JP, Obiols-Rabasa M, Schmidt TJ, Gubler L, Balog S. Macromolecules 2016, 49, 4253–4264.10.1021/acs.macromol.6b00180Suche in Google Scholar
[25] Pandey RP, Shahi VK. Int. J. Hydrog. Energy 2015, 40, 14235–14245.10.1016/j.ijhydene.2015.08.074Suche in Google Scholar
[26] Kim SK, Lee YS, Koo KK, Kim SH, Choi SH. J. Nanosci. Nanotechnol. 2015, 15, 6942–6948.10.1166/jnn.2015.10557Suche in Google Scholar
[27] Sciacca B, Alvarez SD, Geobaldo F, Sailor MJ. Dalton Trans. 2010, 39, 10847–10853.10.1039/c0dt00936aSuche in Google Scholar
[28] Hu MH, Noda S, Okubo T, Yamaguchi Y, Komiyama H. Appl. Surf. Sci. 2001, 181, 307–316.10.1016/S0169-4332(01)00399-3Suche in Google Scholar
[29] Singh J, Whitten JE. J. Phys. Chem. C. 2008, 112, 19088–19096.10.1021/jp807536zSuche in Google Scholar
[30] Pichonat T, Gauthier-Manuel B, Hauden D. Chem. Eng. J. 2004, 101, 107–111.10.1016/j.cej.2004.01.019Suche in Google Scholar
[31] Pichonat T, Gauthier-Manuel B. J. Micromech. Microeng. 2005, 15, S179–S184.10.1088/0960-1317/15/9/S02Suche in Google Scholar
[32] Pichonat T, Gauthier-Manuel B. J. Membr. Sci. 2006, 280, 494–500.10.1016/j.memsci.2006.02.010Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Banana and plantain fiber-reinforced polymer composites
- Characterizations of PMMA-based polymer electrolyte membranes with Al2O3
- Effects of grafting parameters on the properties of proton exchange membranes based on sulfo-functionalized porous silicon for micro direct methanol fuel cells
- The effect of surface modification of PMMA/chitosan composites on improving adsorption properties for chelating Pb2+
- Characterization of organic solar cells using semiconducting polymers with different bandgaps
- Hindered phenol-mediated damping of polyacrylate rubber: effect of hydrogen bonding strength on the damping properties
- Correlation between fiber orientation distribution and mechanical anisotropy in glass-fiber-reinforced composite materials
- Preparation and assembly
- Replacement of sodium alginate polymer, urea and sodium bicarbonate in the conventional reactive printing of cellulosic cotton
- Carboxylic acid modified pH-responsive composite polymer particles
- Synthesis of SiO2 nanoparticle from bamboo leaf and its incorporation in PDMS membrane to enhance its separation properties
Artikel in diesem Heft
- Frontmatter
- Material properties
- Banana and plantain fiber-reinforced polymer composites
- Characterizations of PMMA-based polymer electrolyte membranes with Al2O3
- Effects of grafting parameters on the properties of proton exchange membranes based on sulfo-functionalized porous silicon for micro direct methanol fuel cells
- The effect of surface modification of PMMA/chitosan composites on improving adsorption properties for chelating Pb2+
- Characterization of organic solar cells using semiconducting polymers with different bandgaps
- Hindered phenol-mediated damping of polyacrylate rubber: effect of hydrogen bonding strength on the damping properties
- Correlation between fiber orientation distribution and mechanical anisotropy in glass-fiber-reinforced composite materials
- Preparation and assembly
- Replacement of sodium alginate polymer, urea and sodium bicarbonate in the conventional reactive printing of cellulosic cotton
- Carboxylic acid modified pH-responsive composite polymer particles
- Synthesis of SiO2 nanoparticle from bamboo leaf and its incorporation in PDMS membrane to enhance its separation properties