Startseite Rheology of poly(lactic acid)/poly(trimethylene terephthalate) blends compatibilized by clay or maleic anhydride-grafted poly(ethylene-octene) elastomer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Rheology of poly(lactic acid)/poly(trimethylene terephthalate) blends compatibilized by clay or maleic anhydride-grafted poly(ethylene-octene) elastomer

  • Gwo-Geng Lin ORCID logo EMAIL logo , Yi-Hu Song , Chao-Tsai Huang ORCID logo , Marek Sipos und Zhaokang Tu
Veröffentlicht/Copyright: 12. Januar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Blends of two biobased polymers, poly(lactic acid) and poly(trimethylene terephthalate) (PTT), were compatibilized with either maleic anhydride-grafted poly(ethylene-octene) (mPOE) or organically modified clay (Cloisite 30B). Dynamic rheological measurements revealed that the mPOE inclusion resulted in a four-fold increase in viscosity relative to the noncompatibilized blends. By loading 3 wt% Cloisite 30B, the storage moduli of the blends showed a distinct solid-like behavior and high complex viscosity in the low-frequency region, which can be interpreted by the reduced sizes of the PTT phase evidenced from the scanning electron microscopy (SEM) micrography. A temperature sweep of the viscosity of the blends starting from 180°C revealed that the existence of an unmelted PTT dispersed phase might impede the decline in viscosity with increasing temperature near the melting point of PTT. The introduced compatibilizers can restrict the temperature-dependent morphology evolution, and the use of the 3 wt% 30B clay can prohibit the morphology evolution during the temperature sweep.

  1. Conflict of interest statement: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

[1] Kümmerer K. Green Chem. 2007, 9, 899–907.10.1039/b618298bSuche in Google Scholar

[2] Jenck JF, Agterberg F, Droescher MJ. Green Chem. 2004, 6, 544–556.10.1039/b406854hSuche in Google Scholar

[3] Arrieta MP, López J, Ferrándiz S, Peltzer MA. Polym. Test. 2013, 32, 760–768.10.1016/j.polymertesting.2013.03.016Suche in Google Scholar

[4] Fortunati E, Armentano I, Iannoni A, Kenny JM. Polym. Degrad. Stab. 2010, 95, 2200–2206.10.1016/j.polymdegradstab.2010.02.034Suche in Google Scholar

[5] Gao T, Zhang Z-M, Li L, Bao R-Y, Liu Z-Y, Xie B-H, Yang M-B, Yang W. ACS Appl. Mater. Interfaces 2018, 10, 20044–20054.10.1021/acsami.8b04907Suche in Google Scholar PubMed

[6] Xie Y, Lan X-R, Bao R-Y, Lei Y, Cao Z-Q, Yang M-B, Yang W, Wang Y-B. Mater. Sci. Eng. C 2018, 90, 602–609.10.1016/j.msec.2018.05.023Suche in Google Scholar PubMed

[7] Bai L, Zhao X, Bao R-Y, Liu Z-Y, Yang M-B, Yang W. J. Mater. Sci. 2018, 53, 10543–10553.10.1007/s10853-018-2306-4Suche in Google Scholar

[8] Gao T, Li Y-Y, Bao R-Y, Liu Z-Y, Xie B-H, Yang M-B, Yang W. Compos. Sci. Technol. 2017, 10, 111–119.10.1016/j.compscitech.2017.09.014Suche in Google Scholar

[9] Sun X-R, Cao Z-Q, Bao R-Y, Liu Z-Y, Xie B-H, Yang M-B, Yang W. ACS Sustain. Chem. Eng. 2017, 5, 8334–8343.10.1021/acssuschemeng.7b02121Suche in Google Scholar

[10] Tonelli AE, Flory PJ. Macromolecules 1969, 2, 225–227.10.1021/ma60009a002Suche in Google Scholar

[11] Grijpma DW, Penning JP, Pennings AJ. Colloid Polym. Sci. 1994, 272, 1068–1081.10.1007/BF00652375Suche in Google Scholar

[12] Broz ME, VanderHart DL, Washburn NR. Biomaterials 2003, 24, 4181–4190.10.1016/S0142-9612(03)00314-4Suche in Google Scholar PubMed

[13] Zhang W, Chen L, Zhang Y. Polymer 2009, 50, 1311–1315.10.1016/j.polymer.2009.01.032Suche in Google Scholar

[14] Wang Y, Zhu H, Li B. Opt. Commun. 2011, 284, 3276–3279.10.1016/j.optcom.2011.03.031Suche in Google Scholar

[15] Yu H, Liao D, Johnston MB, Li B. ACS Nano 2011, 5, 2020–2025.10.1021/nn1034185Suche in Google Scholar PubMed

[16] Chang JH, Mun MK, Kim JC. J. Appl. Polym. Sci. 2006, 102, 4535–4545.10.1002/app.24948Suche in Google Scholar

[17] Chang JH, Kim SJ, Im S. Polymer 2004, 45, 5171–5181.10.1016/j.polymer.2004.05.012Suche in Google Scholar

[18] Chuah HH. Polym. Eng. Sci. 2001, 41, 308–313.10.1002/pen.10730Suche in Google Scholar

[19] Drown EK, Mohanty AK, Parulekar Y, Hasija D, Harte BR, Misra M, Kurian JV. Compos. Sci. Technol. 2007, 67, 3168–3175.10.1016/j.compscitech.2007.04.011Suche in Google Scholar

[20] Guerrica-Echevarria G, Eguiazábal JI, Nazábal J. Eur. Polym. J. 2007, 43, 1027–1037.10.1016/j.eurpolymj.2006.11.036Suche in Google Scholar

[21] Zou H, Yi C, Wang L, Xu W. Polym. Bull. 2010, 64, 471–481.10.1007/s00289-009-0191-3Suche in Google Scholar

[22] Wang K, Chen Y, Zhang Y. Polymer 2008, 49, 3301–3309.10.1016/j.polymer.2008.05.025Suche in Google Scholar

[23] Wang M, Wu Y, Li Y-D, Zeng J-B. Polym. Rev. 2017, 57, 557–593.10.1080/15583724.2017.1287726Suche in Google Scholar

[24] Chun BC, Cho TK, Chong MH, Chung YC, Chen J, Martin D, Cieslinski RC. J. Appl. Polym. Sci. 2007, 106, 712–721.10.1002/app.26721Suche in Google Scholar

[25] Krishnamachari P, Zhang J, Lou J, Yan J, Uitenham L. Int. J. Polym. Anal. Ch. 2009, 14, 336–350.10.1080/10236660902871843Suche in Google Scholar

Received: 2018-08-26
Accepted: 2018-12-07
Published Online: 2019-01-12
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Material properties
  3. Sorption capacities of chitosan/polyethylene oxide (PEO) electrospun nanofibers used to remove ibuprofen in water
  4. Influence of epoxidized ethylene propylene diene rubber on nonisothermal crystallization kinetics and mechanical properties of poly(butylene terephthalate)/polypropylene blend
  5. Polyaniline enfolded hybrid carbon array substrate electrode for high performance supercapacitors
  6. Neighboring group effect on the thermal degradation of polyacrylamide and its derivatives
  7. Rheology of poly(lactic acid)/poly(trimethylene terephthalate) blends compatibilized by clay or maleic anhydride-grafted poly(ethylene-octene) elastomer
  8. Preparation and assembly
  9. Preparation of particulate polyvinylidene fluoride membranes of different particle sizes for membrane distillation applications
  10. Evaluation of internal morphology and engineering properties of graphite-filled UHMWPE nanocomposites produced using a novel octa-screw kneading extruder
  11. Development of NIPAAm-PEG acrylate polymeric nanoparticles for co-delivery of paclitaxel with ellagic acid for the treatment of breast cancer
  12. Engineering and processing
  13. Stereocomplex formation in injection-molded poly(L-lactic acid)/poly(D-lactic acid) blends
  14. Chaotic mixing analysis of a novel single-screw extruder with a perturbation baffle by the finite-time Lyapunov exponent method
  15. Influence of talc and rubber contents on surface replication of polypropylene injection molding application to automotive plastics
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2018-0256/html
Button zum nach oben scrollen