Startseite Influence of epoxidized ethylene propylene diene rubber on nonisothermal crystallization kinetics and mechanical properties of poly(butylene terephthalate)/polypropylene blend
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of epoxidized ethylene propylene diene rubber on nonisothermal crystallization kinetics and mechanical properties of poly(butylene terephthalate)/polypropylene blend

  • Bo Liu und Wei Wu EMAIL logo
Veröffentlicht/Copyright: 28. Dezember 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The epoxidized ethylene propylene diene rubber (eEPDM) was successfully prepared by the epoxidation of ethylene propylene diene rubber (EPDM) using t-butyl hydroperoxide as the oxidant in association with molybdenum oxide as the catalyst and characterized by Fourier-transform infrared (FTIR) spectrometer and 1H-nuclear magnetic resonance analyses. Then the poly(butylene terephthalate) (PBT)/eEPDM/polypropylene (PP) blends with different eEPDM contents were prepared using a twin-screw extruder, and the effect of eEPDM on nonisothermal crystallization kinetics of PBT/PP blend was investigated by differential scanning calorimetry. Meanwhile, morphological features of samples were observed using scanning electron microscopy. Also, the mechanical properties of samples were evaluated. Analyses of the crystallization data by various macro-kinetic models like Jeziorny modified Avrami and Liu-Mo model demonstrated that PP as diluents accelerated the crystallization of PBT in PBT/PP. Moreover, the addition of eEPDM into PBT/PP further facilitated the crystallization of PBT in PBT/eEPDM/PP. The eEPDM was an effective crystallization promoter for PBT/PP blend. And the presence of eEPDM promoted the uniform dispersion of PP in PBT matrix. When the content of eEPDM was 5 phr, the PBT/eEPDM/PP exhibited the highest notched impact strength and Young’s modulus among all the specimens.

Acknowledgments

The authors gratefully acknowledge the Center of Material Research and Analysis in East China University of Science and Technology for supporting the testing of specimens. Also we express our gratitude to Sino-German Joint Research Center of Advanced Materials for supporting in the preparation of blends.

  1. Conflict of interest statement: The authors declare that there is no conflict of interests.

References

[1] Ignaczak W, Wis̈niewska K, Janik J, Fray ME. Pol. J. Chem. Technol. 2015, 17, 78–83.10.1515/pjct-2015-0053Suche in Google Scholar

[2] Ao YH, Sun SL, Tan ZY, Zhou C, Xu N, Tang K, Yang HD, Zhang HX. Polym. Bull. 2007, 58, 447–455.10.1007/s00289-006-0682-4Suche in Google Scholar

[3] Zhang BY, Sun QJ, Li QY, Wang Y. J. Appl. Polym. Sci. 2006, 102, 4712–4719.10.1002/app.24797Suche in Google Scholar

[4] Ignaczak W, Sui XM, Kellersztein I, Wagner HD, El Fray M. Polym. Int. 2018, 67, 414–421.10.1002/pi.5522Suche in Google Scholar

[5] Barhoumi N, Jaziri M, Massardier V, Cassagnau P. Polym. Eng. Sci. 2008, 48, 1592–1599.10.1002/pen.21116Suche in Google Scholar

[6] Hajibaba A, Masoomi M, Nazockdast H. Iran. Polym. J. 2016, 25, 157–167.10.1007/s13726-015-0410-8Suche in Google Scholar

[7] Sun QJ, Zhang BY, Yao DS, Yu L, Jiang ZL. J. Appl. Polym. Sci. 2009, 112, 3007–3015.10.1002/app.29874Suche in Google Scholar

[8] Fang H, Wu F. J. Appl. Polym. Sci. 2014, 131, 2929–2938.10.1002/app.40849Suche in Google Scholar

[9] Deshmukh GS, Peshwe DR, Pathak SU, Ekhe JD. Thermochim. Acta 2015, 606, 66–76.10.1016/j.tca.2015.03.008Suche in Google Scholar

[10] Zhang Z, Feng L, Li Y, Wang Y, Yan C. Polym. Compos. 2015, 36, 510–516.10.1002/pc.22966Suche in Google Scholar

[11] Oburoğlu N, Ercan N, Durmus A, Kaşgöz A. J. Appl. Polym. Sci. 2011, 123, 77–91.10.1002/app.34464Suche in Google Scholar

[12] Wang X, Zhang X, Zhang L. J. Appl. Polym. Sci. 2013, 128, 400–406.10.1002/app.38160Suche in Google Scholar

[13] Shi Y-H, Dou Q. J. Therm. Anal. Calorim. 2013, 112, 901–911.10.1007/s10973-012-2611-0Suche in Google Scholar

[14] Daud M, Shehzad F, Al-Harthi MA. Can. J. Chem. Eng. 2017, 95, 491–499.10.1002/cjce.22711Suche in Google Scholar

[15] Shehzad F, Thomas SP, Al-Harthi MA. Thermochim. Acta 2014, 589, 226–234.10.1016/j.tca.2014.05.039Suche in Google Scholar

[16] Fillon B, Wittmann JC, Lotz B, Thierry A. J. Polym. Sci. Part B: Polym. Phys. 1993, 31, 1383–1393.10.1002/polb.1993.090311013Suche in Google Scholar

[17] Joshi M, Butola BS. Polymer 2004, 45, 4953–4968.10.1016/j.polymer.2004.04.057Suche in Google Scholar

[18] Huang JW, Wen YL, Kang CC, Yeh MY, Wen SB. J. Appl. Polym. Sci. 2008, 107, 583–592.10.1002/app.26960Suche in Google Scholar

[19] Kalkar AK, Deshpande VD, Purkar BR. Thermochim. Acta 2018, 660, 23–36.10.1016/j.tca.2017.12.005Suche in Google Scholar

[20] Ferreira CI, Dal Castel C, Oviedo MAS, Mauler RS. Thermochim. Acta 2013, 553, 40–48.10.1016/j.tca.2012.11.025Suche in Google Scholar

[21] Vyazovkin S. Polym. Cryst. 2018, 1, e10003.10.1002/pcr2.10003Suche in Google Scholar

[22] Kim JY, Park HS, Kim SH. Polymer 2006, 47, 1379–1389.10.1016/j.polymer.2005.12.042Suche in Google Scholar

[23] Ahangari MG, Fereidoon A, Kordani N, Garmabi H. Polym. Bull. 2011, 66, 239–258.10.1007/s00289-010-0351-5Suche in Google Scholar

[24] Shi J, Yang X, Wang X, Lu L. Polym. Test. 2010, 29, 596–602.10.1016/j.polymertesting.2010.03.007Suche in Google Scholar

[25] Bao J, Chang R, Shan G, Bao Y, Pan P. Cryst. Growth Des. 2016, 16, 1502–1511.10.1021/acs.cgd.5b01627Suche in Google Scholar

[26] Avrami M. J. Chem. Phys. 1939, 7, 1103–1112.10.1063/1.1750380Suche in Google Scholar

[27] Avrami M. J. Chem. Phys. 1940, 8, 212–224.10.1063/1.1750631Suche in Google Scholar

[28] Jeziorny A. Polymer 1978, 19, 1142–1144.10.1016/0032-3861(78)90060-5Suche in Google Scholar

[29] Ozawa T. Polymer 1971, 12, 150–158.10.1016/0032-3861(71)90041-3Suche in Google Scholar

[30] Liu F-Y, Xu C-L, Zeng J-B, Li S-L, Wang Y-Z. Thermochim. Acta 2013, 568, 38–45.10.1016/j.tca.2013.06.025Suche in Google Scholar

[31] Bai H, Zhang Y, Zhang Y, Zhang X, Zhou W. J. Appl. Polym. Sci. 2006, 101, 1295–1308.10.1002/app.22669Suche in Google Scholar

[32] Kalkar AK, Deshpande AA. Polym. Eng. Sci. 2001, 41, 1597–1615.10.1002/pen.10858Suche in Google Scholar

[33] Run M, Song A, Wang Y, Yao C. J. Appl. Polym. Sci. 2007, 104, 3459–3468.10.1002/app.26147Suche in Google Scholar

[34] Zhao YH, Sheng J, Wang YQ. J. Appl. Polym. Sci. 2003, 87, 1232–1238.10.1002/app.11517Suche in Google Scholar

[35] Liu T, Mo Z, Wang S, Zhang H. Polym. Eng. Sci. 1997, 37, 568–575.10.1002/pen.11700Suche in Google Scholar

Received: 2018-08-30
Accepted: 2018-11-28
Published Online: 2018-12-28
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Material properties
  3. Sorption capacities of chitosan/polyethylene oxide (PEO) electrospun nanofibers used to remove ibuprofen in water
  4. Influence of epoxidized ethylene propylene diene rubber on nonisothermal crystallization kinetics and mechanical properties of poly(butylene terephthalate)/polypropylene blend
  5. Polyaniline enfolded hybrid carbon array substrate electrode for high performance supercapacitors
  6. Neighboring group effect on the thermal degradation of polyacrylamide and its derivatives
  7. Rheology of poly(lactic acid)/poly(trimethylene terephthalate) blends compatibilized by clay or maleic anhydride-grafted poly(ethylene-octene) elastomer
  8. Preparation and assembly
  9. Preparation of particulate polyvinylidene fluoride membranes of different particle sizes for membrane distillation applications
  10. Evaluation of internal morphology and engineering properties of graphite-filled UHMWPE nanocomposites produced using a novel octa-screw kneading extruder
  11. Development of NIPAAm-PEG acrylate polymeric nanoparticles for co-delivery of paclitaxel with ellagic acid for the treatment of breast cancer
  12. Engineering and processing
  13. Stereocomplex formation in injection-molded poly(L-lactic acid)/poly(D-lactic acid) blends
  14. Chaotic mixing analysis of a novel single-screw extruder with a perturbation baffle by the finite-time Lyapunov exponent method
  15. Influence of talc and rubber contents on surface replication of polypropylene injection molding application to automotive plastics
Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2018-0283/html
Button zum nach oben scrollen