Startseite Effect of addition of silicone oil on the rheology of fumed silica and polyethylene glycol shear thickening suspension
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of addition of silicone oil on the rheology of fumed silica and polyethylene glycol shear thickening suspension

  • Mansi Singh ORCID logo , Sanjeev Kumar Verma , Ipsita Biswas und Rajeev Mehta ORCID logo EMAIL logo
Veröffentlicht/Copyright: 25. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Shear thickening fluids (STF) are stabilized and concentrated colloidal suspensions of hard nano-particles in a liquid medium (polymer) that, under the influence of impact forces, show non-Newtonian fluid behavior (shear thickening) dissipating the energy of impact. The viscosity of the dispersion medium should be optimum to lead to an increase in shear thickening, and at the same time, should also allow proper dispersion of the particles. Herein, an STF based on 20 wt% fractal nano-fumed silica particles of 11 nm suspended in a liquid medium of polyethylene glycol (PEG 200) with different concentrations of silicone oil was prepared. These systems were studied in terms of steady-state and dynamic-state rheological behavior under a wide range of temperature, shear rate, strain rate and frequency. The STF with replacement of up to only 20% of PEG with silicone oil as the liquid medium shows a large increase (about four times) in shear thickening parameters when compared with STF containing only PEG under the same processing conditions. It also shows more elastic behavior at high frequencies which are due to the high cross-linking property of silicone oil, contributing to much-improved properties, which are highly desirable from the view point of many applications.

Acknowledgements

The authors gratefully acknowledge the support by the Armament Research Board (ARMREB) of Defence Research and Development Organization (DRDO), Government of India. The authors also acknowledge the support of the Terminal Ballistics Research Laboratory (TBRL), Chandigarh, India.

References

[1] Cwalina CD, Dombrowski RD, McCutcheon CJ, Christiansen EL, Wagner NJ. Procedia Eng. 2015, 103, 97–104.10.1016/j.proeng.2015.04.014Suche in Google Scholar

[2] Galindo-Rosales FJ. Appl. Sci. 2016, 6, 206.10.3390/app6080206Suche in Google Scholar

[3] Wagner N, Kirkwood J, Egres R. United States patent application US 11/260,742. 2006.Suche in Google Scholar

[4] Wierzbicki Ł, Danelska A, Olszewska K, Tryznowski M, Zielińska D, Kucińska I, Szafran M, Leonowicz M. Compos. Theory Pract. 2013, 4, 241–244.Suche in Google Scholar

[5] Boersma W, Baets P, Lavèn J, Stein H. J. Rheol. 1991, 35, 1093–1120.10.1122/1.550167Suche in Google Scholar

[6] Barnes H. J. Rheol. 1989, 33, 329–366.10.1122/1.550017Suche in Google Scholar

[7] Zhang X, Li W, Gong X. Smart Mater. Struct. 2008, 17, 035027.10.1088/0964-1726/17/3/035027Suche in Google Scholar

[8] Wagner N, Wetzel ED. University of Delaware, 2009. U.S. Patent 7498276.Suche in Google Scholar

[9] Wetzel ED, Lee Y, Egres R, Kirkwood K, Kirkwood J, Wagner N, Ghosh S, Lee JK, Castro JC. AIP Conf. Proc. 2004, 712, 288–293.10.1063/1.1766538Suche in Google Scholar

[10] Zhou H, Yan L, Jiang W, Xuan S, Gong X. J. Intell. Mater. Syst. Struct. 2016, 27, 208–220.10.1177/1045389X14563869Suche in Google Scholar

[11] Kurahatti R, Surendranathan A, Kori S, Singh N, Kumar AR, Srivastava S. Def. Sci. J. 2010, 60, 551–563.10.14429/dsj.60.578Suche in Google Scholar

[12] Egres Jr RG, Decker MJ, Halbach CJ, Lee YS, Kirkwood JE, Kirkwood KM, Wagner NJ, Wetzel ED. Transformational Science and Technology for the Current and Future Force 2006, pp 264–271. https://doi.org/10.1142/9789812772572_0034.10.1142/9789812772572_0034Suche in Google Scholar

[13] Decker M, Halbach C, Nam C, Wagner N, Wetzel E. Compos. Sci. Technol. 2007, 67, 565–578.10.1016/j.compscitech.2006.08.007Suche in Google Scholar

[14] Yeh F-Y, Chang K-C, Chen T-W, Yu C-H. J. Chin. Inst. Eng. 2014, 37, 983–994.10.1080/02533839.2014.912775Suche in Google Scholar

[15] Kang TJ, Hong KH, Yoo MR. Fibers Polym. 2010, 11, 719–24.10.1007/s12221-010-0719-zSuche in Google Scholar

[16] Baharvandi HR, Saeedi Heydari M, Kordani N, Alebooyeh M, Alizadeh M, Khaksari P. J. Text. Inst. 2017, 108, 397–407.10.1080/00405000.2016.1168091Suche in Google Scholar

[17] Majumdar A, Butola BS, Srivastava A. Mater. Des. 2013, 46, 191–198.10.1016/j.matdes.2012.10.018Suche in Google Scholar

[18] Fischer C, Plummer CJ, Michaud V, Bourban P-E, Månson J-AE. Rheol. Acta 2007, 46, 1099–1108.10.1007/s00397-007-0202-ySuche in Google Scholar

[19] Singh M, Mehta R, Verma SK, Biswas I. Mater. Res. Express 2018, 5, 014001.10.1088/2053-1591/aa9f3fSuche in Google Scholar

[20] Raghavan SR, Khan SA. J. Colloid Interface Sci. 1997, 185, 57–67.10.1006/jcis.1996.4581Suche in Google Scholar PubMed

[21] Wagner NJ, Brady JF. Phys. Today 2009, 62, 27–32.10.1063/1.3248476Suche in Google Scholar

[22] Jiang W, Xuan S, Gong X. Appl. Phys. Lett. 2015, 106, 151902.10.1063/1.4918344Suche in Google Scholar

[23] Moriana AD, Tian T, Sencadas V, Li W. Korea Aust. Rheol. J. 2016, 28, 197–205.10.1007/s13367-016-0020-9Suche in Google Scholar

[24] Wu XJ, Wang Y, Yang W, Xie BH, Yang MB, Dan W. Soft Matter 2012, 8, 10457–10463.10.1039/c2sm25668aSuche in Google Scholar

[25] Wu XJ, Wang Y, Wang M, Yang W, Xie BH, Yang MB. Colloid Polym. Sci. 2012, 290, 151–161.10.1007/s00396-011-2535-4Suche in Google Scholar

[26] Clements FE, Mahfuz H. Enhancing the stab resistance of flexible body armor using functionalized SiO2 nanoparticles. In 16th International Conference on Composite Materials, Kyoto, Japan, 2007. pp. 8–13.Suche in Google Scholar

[27] Warren J, Offenberger S, Toghiani H, Pittman Jr CU, Lacy TE, Kundu S. ACS Appl. Mater. Interfaces 2015, 7, 18650–18661.10.1021/acsami.5b05094Suche in Google Scholar PubMed

[28] Petel OE, Ouellet S, Loiseau J, Marr BJ, Frost DL, Higgins AJ. Appl. Phys. Lett. 2013, 102, 064103.10.1063/1.4791785Suche in Google Scholar

[29] Shenoy SS, Wagner NJ. Rheol. Acta 2005, 44, 360–371.10.1007/s00397-004-0418-zSuche in Google Scholar

[30] Singh M, Mehta R, Verma SK, Biswas I. Mater. Res. Express 2018, 5, 05570410.1088/2053-1591/aac25cSuche in Google Scholar

[31] Antosik A, Głuszek M, Żurowski R, Szafran M. Arch. Metall. Mater. 2016, 61, 1511–1514.10.1515/amm-2016-0247Suche in Google Scholar

[32] Kamibayashi M, Ogura H, Otsubo Y. J. Colloid Interface Sci. 2008, 321, 294–301.10.1016/j.jcis.2008.02.022Suche in Google Scholar PubMed

[33] Tan V, Tay T, Teo W. Int. J. Solids Struct. 2005, 42, 1561–1576.10.1016/j.ijsolstr.2004.08.013Suche in Google Scholar

[34] Kang TJ, Kim CY, Hong KH. J. Appl. Polym. Sci. 2012, 124, 1534–1541.10.1002/app.34843Suche in Google Scholar

[35] Yu K, Cao H, Qian K, Sha X, Chen Y. J. Nanopart. Res. 2012, 14, 747.10.1007/s11051-012-0747-2Suche in Google Scholar

[36] Raghavan SR, Walls H, Khan SA. Langmuir 2000, 16, 7920–7930.10.1021/la991548qSuche in Google Scholar

[37] Tian T, Li W, Ding J, Alici G, Du H. Study of the temperature effect of shear thickening fluid. In 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, USA, 2013. pp. 833–837. http://dx.doi.org/10.1109/AIM.2013.6584197.10.1109/AIM.2013.6584197Suche in Google Scholar

[38] Tian T, Peng G, Li W, Ding J, Nakano M. Korea Aust. Rheol. J. 2015, 27, 17–24.10.1007/s13367-015-0003-2Suche in Google Scholar

[39] Shaw MT, MacKnight WJ. Introduction to Polymer Viscoelasticity, John Wiley & Sons, Hoboken, 2005. https://doi.org/10.1002/0471741833.ch1.10.1002/0471741833Suche in Google Scholar

[40] Hassan TA, Rangari VK, Jeelani S. Ultrason. Sonochem. 2010, 17, 947–952.10.1016/j.ultsonch.2010.02.001Suche in Google Scholar PubMed

[41] Nenno P, Chin W, Wetzel ED. Flammability testing of fabrics treated with oil-based shear thickening fluids. In Army Research Lab Aberdeen Proving Ground MD Weapons and Materials Research Directorate; 2014 May.10.21236/ADA601457Suche in Google Scholar

[42] Böhm P. Functional Silicones and Silicone-Containing Block Copolymers (Doctoral dissertation, Universitätsbibliothek Mainz), 2012.Suche in Google Scholar

[43] Zheng S-B, Xuan S-H, Jiang W-Q, Gong X-L. Smart Mater. Struct. 2015, 24, 085033.10.1088/0964-1726/24/8/085033Suche in Google Scholar

[44] Joselin R, Wilson WJ. Def. Sci. J. 2014, 64, 236.10.14429/dsj.64.7322Suche in Google Scholar

[45] Ramesh KT. Springer Handbook of Experimental Solid Mechanics, Springer, Boston, MA, 2008. pp. 929–960. https://doi.org/10.1007/978-0-387-30877-7_33.10.1007/978-0-387-30877-7_33Suche in Google Scholar

[46] Tian T, Li W, Ding J, Alici G, Du H. Smart Mater. Struct. 2012, 21, 125009.10.1088/0964-1726/21/12/125009Suche in Google Scholar

[47] Srivastava A, Majumdar A, Butola B. Crit. Rev. Solid State Mater. Sci. 2012, 37, 115–129.10.1080/10408436.2011.613493Suche in Google Scholar

[48] Liu XQ, Bao RY, Wu XJ, Yang W, Xie BH, Yang MB. RSC Adv. 2015, 5, 18367–18374.10.1039/C4RA16261GSuche in Google Scholar

[49] Russel WB, Saville DA, Schowalter WR. Colloidal Dispersions. Cambridge University Press: Cambridge, 1989.10.1017/CBO9780511608810Suche in Google Scholar

[50] Lee YS, Wagner NJ. Rheol. Acta 2003, 42, 199–208.10.1007/s00397-002-0290-7Suche in Google Scholar

[51] Laun H, Bung R, Schmidt F. J. Rheol. 1991, 35, 999–1034.10.1122/1.550257Suche in Google Scholar

Received: 2018-03-07
Accepted: 2018-07-25
Published Online: 2018-08-25
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2018-0054/html
Button zum nach oben scrollen