Abstract
In this study, polyvinyl chloride (PVC)/rice straw (RS)/graphene oxide (GO) sustainable nanocomposite was prepared using the direct compounding method. Structural, morphological and mechanical properties of fabricated sustainable nanocomposites were compared with unfilled and RS-filled PVC compounds. Mechanical characteristics of PVC decreased with loading RS fibers. The main reason for the mechanical failure of PVC/RS composite is the incompatibility between PVC and RS fibers. GO nanosheets are used here to improve the compatibility between RS fibers and PVC macromolecules. Compared to the neat PVC, maximum strength of the RS/GO-loaded PVC composite increased up to 31%, with incorporating only 1 wt% of GO nanosheets. This enhancement in the mechanical characteristics of PVC/RS/GO nanocomposite can only be due to the role of GO nanosheets as a compatibilizer, as 1 wt% GO loading can only increase the mechanical strength of PVC compounds up to 9%. Fourier transform infrared spectroscopy results are used here to study the nature of these behaviors. It is suggested that the non-covalent and physical interactions between cellulose/hemicellulose portions of RS fibers and GO functional groups result in the enhancement of mechanical characteristics. Consequently, GO can be considered as a new compatibilizer for fabricating high performance PVC-based sustainable nanocomposites.
Acknowledgments
The authors would like to thank the “Research Council of Lahijan Branch – Islamic Azad University” for the financial support of this work.
References
[1] Kiani H, Ashori A, Mozaffari SA. Polym. Bull. 2010, 66, 797–802.10.1007/s00289-010-0381-zSuche in Google Scholar
[2] Gupta BD, Verdu J. J. Polym. Eng. 1988, 8, 73.10.1515/POLYENG.1988.8.1-2.73Suche in Google Scholar
[3] Ashori A, Kiani H, Mozaffari SA. J. Appl. Polym. Sci. 2011, 120, 1788–1793.10.1002/app.33378Suche in Google Scholar
[4] Fasihi M, Garmabi H. J. Vinyl Addit. Technol. 2011, 17, 112–119.10.1002/vnl.20264Suche in Google Scholar
[5] Liu G. J. Polym. Eng. 2014, 34, 201.10.1515/polyeng-2014-0081Suche in Google Scholar
[6] Pulngern T, Padyenchean C, Rosarpitak V, Prapruit W, Sombatsompop N. Mater. Des. 2011, 32, 3431–3439.10.1016/j.matdes.2011.02.005Suche in Google Scholar
[7] Chand N, Sharma J, Bapat MN. J. Appl. Polym. Sci. 2012, 126, 1105–1111.10.1002/app.36838Suche in Google Scholar
[8] Shah BL, Matuana LM, Heiden PA. J. Vinyl Addit. Technol. 2005, 11, 160–165.10.1002/vnl.20056Suche in Google Scholar
[9] Yim H, Kim DS. Polym. Adv. Technol. 2012, 23, 1441–1445.10.1002/pat.2065Suche in Google Scholar
[10] Matuana LM, Woodhams RT, Balatinecz JJ, Park CB. Polym. Compos. 1998, 19, 446–455.10.1002/pc.10119Suche in Google Scholar
[11] Deshmukh K, Joshi GM. Polym. Test. 2014, 34, 211–219.10.1016/j.polymertesting.2014.01.015Suche in Google Scholar
[12] Haghighi AH, Sheydaei M, Allahbakhsh A, Ghatarband M, Hosseini FS. J. Therm. Anal. Calorim. 2014, 117, 525–535.10.1007/s10973-014-3752-0Suche in Google Scholar
[13] Luong ND, Pahimanolis N, Hippi U, Korhonen JT, Ruokolainen J, Johansson L-S, Nam J-D, Seppälä J. J. Mater. Chem. 2011, 21, 13991.10.1039/c1jm12134kSuche in Google Scholar
[14] Allahbakhsh A, Mazinani S, Kalaee MR, Sharif F. Thermochim. Acta 2013, 563, 22–32.10.1016/j.tca.2013.04.010Suche in Google Scholar
[15] Allahbakhsh A, Sharif F, Mazinani S. Nano 2013, 08, 1350045.10.1142/S1793292013500458Suche in Google Scholar
[16] Allahbakhsh A, Sheydaei M, Mazinani S, Kalaee M. High Perform. Polym. 2013, 25, 576–583.10.1177/0954008313476314Suche in Google Scholar
[17] Hosseini SM, Razzaghi-Kashani M. Polymer 2014, 55, 6426–6434.10.1016/j.polymer.2014.09.073Suche in Google Scholar
[18] Allahbakhsh A, Mazinani S. RSC Adv. 2015, 5, 46694–46704.10.1039/C5RA00394FSuche in Google Scholar
[19] Taylan NB, Sari B, Unal HI. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 1290–1298.10.1002/polb.22023Suche in Google Scholar
[20] Yao RS, Li FH. In: Cellulose – Biomass Conversion, Van de Ven T, Kadla J, Eds., InTech: Croatia, 2013, pp 145–158.Suche in Google Scholar
[21] Li FH, Hu HJ, Yao RS, Wang H, Li MM. Ind. Eng. Chem. Res. 2012, 51, 6270–6274.10.1021/ie202547wSuche in Google Scholar
[22] Yasuda M, Takeo K, Matsumoto T, Shiragami T, Sugamoto K, Matsushita YI, Ishii Y. In: Sustainable Degradation of Lignocellulosic Biomass – Techniques, Applications and Commercialization, Chandel AK, Silvério da Silva S, Eds., InTech: Croatia, 2013, pp 91–104.Suche in Google Scholar
[23] He P, Chai L, Li L, Hao L, Shao L, Lü F. RSC Adv. 2013, 3, 11759.10.1039/c3ra40654gSuche in Google Scholar
[24] Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Biotechnol. Bioeng. 2008, 101, 913–925.10.1002/bit.21959Suche in Google Scholar
[25] Worasuwannarak N, Sonobe T, Tanthapanichakoon W. J. Anal. Appl. Pyrol. 2007, 78, 265–271.10.1016/j.jaap.2006.08.002Suche in Google Scholar
[26] Xiao B, Sun XF, Sun R. Polym. Degrad. Stab. 2001, 74, 307–319.10.1016/S0141-3910(01)00163-XSuche in Google Scholar
[27] Crespo JE, Sanchez L, Garcia D, Lopez J. J. Reinf. Plast. Compos. 2007, 27, 229–243.10.1177/0731684407079479Suche in Google Scholar
[28] Kamel S. Polym. Adv. Technol. 2004, 15, 612–616.10.1002/pat.514Suche in Google Scholar
[29] Irfan M, Nadeem M, Syed Q. Braz. J. Microbiol. 2014, 45, 457–465.10.1590/S1517-83822014000200012Suche in Google Scholar
[30] Oh GH, Yun CH, Park CR. Carbon Sci. 2003, 4, 180–184.Suche in Google Scholar
[31] Rajendran S, Uma T. Mater. Lett. 2000, 44, 208–214.10.1016/S0167-577X(00)00029-XSuche in Google Scholar
[32] Theodorou M, Jasse B. J. Polym. Sci., Polym. Phys. Ed. 1983, 21, 2263–2274.10.1002/pol.1983.180211104Suche in Google Scholar
[33] Ramesh S, Leen KH, Kumutha K, Arof AK. Spectrochim. Acta, Pt A: Mol. Spectrosc. 2007, 66, 1237–1242.10.1016/j.saa.2006.06.012Suche in Google Scholar PubMed
[34] Wu Z, Li S, Liu M, Wang Z, Liu X. RSC Adv. 2015, 5, 11325–11333.10.1039/C4RA14100HSuche in Google Scholar
[35] Rajendran S, Uma T. Ionics 2001, 7, 122–125.10.1007/BF02375478Suche in Google Scholar
[36] Matuana LM, Kamdem DP, Zhang J. J. Appl. Polym. Sci. 2001, 80, 1943–1950.10.1002/app.1292Suche in Google Scholar
[37] Gönen M, Öztürk S, Balköse D, Okur S, Ülkü S. Ind. Eng. Chem. Res. 2010, 49, 1732–1736.10.1021/ie901437dSuche in Google Scholar
[38] Ulutan S. J. Appl. Polym. Sci. 2003, 90, 3994–3999.10.1002/app.13133Suche in Google Scholar
[39] Peprnicek T, Kalendova A, Pavlova E, Simonik J, Duchet J, Gerard JF. Polym. Degrad. Stab. 2006, 91, 3322–3329.10.1016/j.polymdegradstab.2006.06.008Suche in Google Scholar
[40] Yang H, Yan R, Chen H, Lee DH, Zheng C. Fuel 2007, 86, 1781–1788.10.1016/j.fuel.2006.12.013Suche in Google Scholar
[41] Fu P, Hu S, Xiang J, Sun L, Yang T, Zhang A, Zhang J. Chin. J. Chem. Eng. 2009, 17, 522–529.10.1016/S1004-9541(08)60240-2Suche in Google Scholar
[42] Hsu TC, Guo GL, Chen WH, Hwang WS. Bioresour. Technol. 2010, 101, 4907–4913.10.1016/j.biortech.2009.10.009Suche in Google Scholar PubMed
[43] Chen X, Yu J, Zhang Z, Lu C. Carbohydr. Polym. 2011, 85, 245–250.10.1016/j.carbpol.2011.02.022Suche in Google Scholar
[44] Liu Y, Reineke TM. Biomacromolecules 2010, 11, 316–325.10.1021/bm9008233Suche in Google Scholar
[45] Meszlényi G, Körtvélyessy G. Polym. Test. 1999, 18, 551–557.10.1016/S0142-9418(98)00053-1Suche in Google Scholar
[46] Majumder S, Bhuiyan AH. Polym. Sci. Ser A 2011, 53, 85–91.10.1134/S0965545X11010081Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original articles
- Stem cell culture on polyvinyl alcohol hydrogels having different elasticity and immobilized with ECM-derived oligopeptides
- Graphene oxide as a compatibilizer for polyvinyl chloride/rice straw composites
- Effect of hybrid-SiO2 particles on characterization of EPDM and silicone rubber composites for outdoor high-voltage insulations
- Properties of POB reinforced PTFE-based friction material for ultrasonic motors
- Fabrication, characterization, and application of polyester/wood flour composites
- Anisotropic mechanical properties of fused deposition modeled parts fabricated by using acrylonitrile butadiene styrene polymer
- Development of partial miscibility in polycarbonate/polypropylene blends via annealing
- Study on low temperature toughness and crystallization behavior of polypropylene random copolymer
- Steady flow and heat transfer analysis of MHD flow of Phan-Thien-Tanner fluid in double-layer optical fiber coating analysis with slip conditions
Artikel in diesem Heft
- Frontmatter
- Original articles
- Stem cell culture on polyvinyl alcohol hydrogels having different elasticity and immobilized with ECM-derived oligopeptides
- Graphene oxide as a compatibilizer for polyvinyl chloride/rice straw composites
- Effect of hybrid-SiO2 particles on characterization of EPDM and silicone rubber composites for outdoor high-voltage insulations
- Properties of POB reinforced PTFE-based friction material for ultrasonic motors
- Fabrication, characterization, and application of polyester/wood flour composites
- Anisotropic mechanical properties of fused deposition modeled parts fabricated by using acrylonitrile butadiene styrene polymer
- Development of partial miscibility in polycarbonate/polypropylene blends via annealing
- Study on low temperature toughness and crystallization behavior of polypropylene random copolymer
- Steady flow and heat transfer analysis of MHD flow of Phan-Thien-Tanner fluid in double-layer optical fiber coating analysis with slip conditions