Startseite The effect of casting solution composition on surface structure and performance of poly(vinylidene fluoride)/multi-walled carbon nanotubes (PVDF/MWCNTs) hybrid membranes prepared via vapor induced phase separation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The effect of casting solution composition on surface structure and performance of poly(vinylidene fluoride)/multi-walled carbon nanotubes (PVDF/MWCNTs) hybrid membranes prepared via vapor induced phase separation

  • Nana Li EMAIL logo , Zhe Chang , Xiuzhen Zhao und Changfa Xiao
Veröffentlicht/Copyright: 6. August 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work, the poly(vinylidene fluoride)/multi-walled carbon nanotubes (PVDF/MWCNTs) hybrid membranes were obtained through vapor induced phase separation (VIPS). In addition, the effects of solution composition on crystal behavior, elemental composite, morphology and hydrophilicity of membranes surface and the viscosity of casting solution were analyzed. The results of field emission scanning electron microscopy and X-ray photoelectron spectroscopy showed that the rough porous surface could be built in all hybrid membranes due to the slower double diffusion mechanism of the VIPS process, which also provided enough time for MWCNTs to move to the surface and be enriched there, to ensure the lowest surface free energy. Furthermore, other analysis displayed that both adding tiny amounts of MWCNTs and a low concentration of PVDF were favorable to the growth and aggregation of PVDF, which were put down to the adverse effect of hydrophobic MWCNTs on the thermodynamic compatibility of polar casting solution, the less nucleation points and the good fluidity with lower concentration of polymer. Then, the diameter of PVDF spherical particles and the membrane surface roughness increased, whereas the hydrophilicity of membrane surface declined effectively.

Award Identifier / Grant number: 51503144

Funding statement: The authors thank the National Natural Science Foundation of China (51503144), the Specialized Research Fund for the Doctoral Program of Higher Education (20131201120003), the Science and Technology Plans of Tianjin (15PTSYJC00230) and the Program Scholars and Chang-jiang Innovative Research Team in the University of Ministry of Education of China (IRT13084) for the financial support

Acknowledgments

The authors thank the National Natural Science Foundation of China (51503144), the Specialized Research Fund for the Doctoral Program of Higher Education (20131201120003), the Science and Technology Plans of Tianjin (15PTSYJC00230) and the Program Scholars and Chang-jiang Innovative Research Team in the University of Ministry of Education of China (IRT13084) for the financial support.

References

[1] Kang GD, Cao YM. J. Membr. Sci. 2014, 463, 145–165.10.1016/j.memsci.2014.03.055Suche in Google Scholar

[2] Hu X, Chen Y, Liang HX, Xiao CF. Mater. Manuf. Processes 2010, 25, 1018–1020.10.1080/10426910903367378Suche in Google Scholar

[3] Wu LK, Huang GW, Hu N, Fu SY, Qiu JH, Wang ZC, Ying J, Chen ZC, Li WG, Tang S. RSC Adv. 2014, 4, 35896–35903.10.1039/C4RA03382ESuche in Google Scholar

[4] Silva ABD, Wisniewski C, Esteves JVA, Gregorio Jr R. J. Mater. Sci. 2010, 45, 4206–4215.10.1007/s10853-010-4515-3Suche in Google Scholar

[5] Silva LCED, Bertran CA, Gonçalves MC. J. Mater. Sci. 2015, 50, 4122–4131.10.1007/s10853-015-8968-2Suche in Google Scholar

[6] Gençal Y, Durmaz EN, Çulfaz-Emecen PZ. J. Membr. Sci. 2015, 476, 224–233.10.1016/j.memsci.2014.11.041Suche in Google Scholar

[7] Li CL, Wang DM, Deratani A, Quemener D, Bouyer D, Lai JY. J. Membr. Sci. 2010, 361(s 1–2), 154–166.10.1016/j.memsci.2010.05.064Suche in Google Scholar

[8] Ghandashtani MB, Ashtiani FZ, Karimi M, Fouladitajar A. Appl. Surf. Sci. 2015, 349, 393–402.10.1016/j.apsusc.2015.05.037Suche in Google Scholar

[9] Dawson NM, Atencio PM, Malloy KJ. Int. J. Polym. Anal. Charact. 2014, 19, 585–593.10.1080/1023666X.2014.932648Suche in Google Scholar

[10] Rahmandoust M, Ayatollahi MR. Carbon Nanotubes, Springer International Publishing: Germany, 2016.10.1007/978-3-319-00251-4_2Suche in Google Scholar

[11] Zhang LJ, Yang H, Wang XY. Nanoscale Res. Lett. 2014, 9, 1–8.10.1186/1556-276X-9-694Suche in Google Scholar PubMed PubMed Central

[12] Shim MH, Kim J, Park CH. Mater. Sci. 2015, 21, 68–73.10.5755/j01.ms.21.1.5762Suche in Google Scholar

[13] Kim HK, Cho YS. Colloids Surf., A 2014, 465, 77–86.10.1016/j.colsurfa.2014.10.029Suche in Google Scholar

[14] Peng M, Li HB, Wu LJ, Zheng Q, Chen Y, Gu WF. J.Appl. Polym. Sci. 2005, 98, 1358–1363.10.1002/app.22303Suche in Google Scholar

[15] Park YS, Hatae T, Itoh H, Jang MY, Yamazaki Y. Electrochim. Acta 2004, 50, 595–599.10.1016/j.electacta.2003.12.073Suche in Google Scholar

[16] Patterson A. Phys. Rev. 1939, 56, 978–982.10.1103/PhysRev.56.978Suche in Google Scholar

[17] Hashim NA, Liu Y, Liu K. Chem. Eng. Sci. 2011, 66, 1565–1575.10.1016/j.ces.2010.12.019Suche in Google Scholar

[18] Peng B, Takai C, Fuji M, Shirail T. Adv. Powder Technol. 2016, 27, 1–10.10.1016/j.apt.2015.08.005Suche in Google Scholar

[19] Caridi F, Picciotto A, Vanzetti L, Iacob E, Scolaro C. Radiat. Phys. Chem. 2015, 115, 49–54.10.1016/j.radphyschem.2015.06.009Suche in Google Scholar

[20] Esmaeilpour M, Niroumand B, Monshi A, Ramezanzadeh B, Salahi E. Prog. Org. Coat. 2016, 90, 317–323.10.1016/j.porgcoat.2015.11.005Suche in Google Scholar

[21] Gregorio R. J. Appl. Polym. Sci. 2006, 100, 3272–3279.10.1002/app.23137Suche in Google Scholar

Received: 2016-4-15
Accepted: 2016-6-20
Published Online: 2016-8-6
Published in Print: 2017-5-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0124/html
Button zum nach oben scrollen