Startseite Effect of titanium nanofiller on the productivity and crystallinity of ethylene and propylene copolymer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of titanium nanofiller on the productivity and crystallinity of ethylene and propylene copolymer

  • Omer Yahya Bakather und Mamdouh A. Al-Harthi EMAIL logo
Veröffentlicht/Copyright: 7. Juli 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Bis(cyclopentadienyl) zirconium (IV) dichloride of empirical formula C10 H10 Cl2 Zr was used as a catalyst. Doped titania with iron (TiO2/Fe) nanofillers were used to study the effect of nanofillers on ethylene homopolymer and ethylene/propylene copolymer properties. Using titanium dioxide doped with iron (TiO2/Fe) resulted in the increase in the molecular weight (Mw) of polyethylene and ethylene/propylene copolymer nanocomposites of up to 80% when compared to the neat polymer. The catalyst activity was increased by using TiO2/Fe nanofiller for both ethylene polymerization and ethylene/propylene copolymerization. Besides the investigation of the catalyst activity and the molecular weight (Mw) of the obtained polymer, molecular weight distribution, copolymer composition, crystallinity and thermal characteristics of polyethylene and polyethylene/polypropylene nanocomposites were also studied. Non-isothermal crystallization kinetics of polyethylene and polyethylene/polypropylene nanocomposites fits well with the Avrami-Erofeev model.


Corresponding author: Mamdouh A. Al-Harthi, Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, P.O. Box: 5050, 31261 Dhahran, Saudi Arabia; and Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia, e-mail:

Acknowledgments

The authors wish to acknowledge the assistance of the Deanship of Scientific Research, King Fahd University of Petroleum and Minerals, for providing adequate funds and infrastructure under project no. IN 131037.

References

[1] Suárez I, Caballero M, Coto B. Eur. Polym. J. 2011, 47, 171–178.Suche in Google Scholar

[2] Silva F, Lima E, Pinto J, McKenna T. Macromol. Chem. Phys. 2005, 206, 2333–2341.Suche in Google Scholar

[3] Busico V, Cipullo R. Prog. Polym. Sci. 2001, 26, 443–533.Suche in Google Scholar

[4] Kaminsky W. Macromol. Chem. Phys. 1996, 197, 3907–3945.Suche in Google Scholar

[5] Zhao C, Qin H, Gong F, Feng M, Zhang S, Yang M. Polym. Degrad. Stabil. 2005, 87, 183–189.Suche in Google Scholar

[6] Wei L, Tang T, Huang B. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 941–949.Suche in Google Scholar

[7] Rossi GB, Beaucage G, Dang D, Vaia R. Nano Lett. 2002, 2, 319–323.Suche in Google Scholar

[8] Verbeek CJR. Mater. Lett. 2002, 56, 226–231.Suche in Google Scholar

[9] Mandal TK, Fleming MS, Walt DR. Nano Lett. 2002, 2, 3–7.Suche in Google Scholar

[10] Sohail OB, Sreekumar PA, De SK, Jabarullah Khan MH, Abbas Alshaiban AA, Al-Harthi MA. J. Nanomater. 2012, 2012, 7.Suche in Google Scholar

[11] Nussbaumer RJ, Caseri WR, Smith P, Tervoort T. Macromol. Mater. Eng. 2003, 288, 44–49.Suche in Google Scholar

[12] Wang Z, Li G, Xie G, Zhang Z. Macromol. Chem. Phys. 2005, 206, 258–262.Suche in Google Scholar

[13] Chen XD, Wang Z, Liao ZF, Mai YL, Zhang MQ. Polym. Test. 2007, 26, 202–208.Suche in Google Scholar

[14] Owpradit W, Jongsomjit B. Mater. Chem. Phys. 2008, 112, 954–961.Suche in Google Scholar

[15] Jongsomjit B, Ekkrachan C, Praserthdam P. J. Mater. Sci. 2005, 40, 2043–2045.Suche in Google Scholar

[16] Kontou E, Niaounakis M. Polymer. 2006, 47, 1267–1280.Suche in Google Scholar

[17] Chaichana E, Jongsomjit B, Praserthdam P. Chem. Eng. Sci. 2007, 62, 899–905.Suche in Google Scholar

[18] Li KT, Dai CL, Kuo CW. Catal. Commun. 2007, 8, 1209–1213.Suche in Google Scholar

[19] Kuo MC, Tsai CM, Huang JC, Chen M. Mater. Chem. Phys. 2005, 90, 185–195.Suche in Google Scholar

[20] Desharun C, Jongsomjit B. Catal. Commun. 2008, 9, 522–528.Suche in Google Scholar

[21] Jongsomjit B, Panpranot J, Okada M, Shiono T, Praserthdam P. Iran. Polym. J. 2006, 15, 433–439.Suche in Google Scholar

[22] Jongsomjit B, Panpranot J, Praserthdam P. Mater. Lett. 2007, 61, 1376–1379.Suche in Google Scholar

[23] Wang Z, Wang X, Xie G, Li G, Zhang Z. Compos. Interf. 2006, 13, 623–632.Suche in Google Scholar

[24] Supaphol P, Thanomkiat P, Junkasem J, Dangtungee R. Polym. Test. 2007, 26, 20–37.Suche in Google Scholar

[25] Owpradit W. Mekasuwandumrong O, Panpranot J, Shotipruk A, Jongsomjit B. Polym. Bull. 2011, 66, 479–490.Suche in Google Scholar

[26] Abdul Kaleel SH, Kottukkal Bahuleyan B, De SK, Jabarulla Khan M, Sougrat R, Al-Harthi MA. J. Ind. Eng. Chem. 2012, 18, 1836–1840.Suche in Google Scholar

[27] Kumbhar A, Chumanov G. J. Nanopart. Res. 2005, 7, 489–498.Suche in Google Scholar

[28] Kožíšek Z, Hikosaka M, Demo P, Sveshnikov AM. J. Cryst. Growth 2005, 275–83.10.1016/j.jcrysgro.2004.10.127Suche in Google Scholar

[29] Liang G, Xu J, Xu W, Shen X, Zhang H, Yao M. Polym. Compos. 2011, 32, 511–518.Suche in Google Scholar

[30] Cheng HN. Macromolecules 1984, 17, 1950–1955.10.1021/ma00140a012Suche in Google Scholar

[31] Anantawaraskul S, Soares J, Wood-Adams P. Polym. Anal. Polym. Theory 2005, 182, 1–54.10.1007/b135559Suche in Google Scholar

[32] Atiqullah M, Hossain M, Kamal M, Al-Harthi MA, Khan MJ, Hossaen A, Hussain I. AIChE J. 2013, 59, 200–214.Suche in Google Scholar

[33] Routray K, Deo G. AIChE J. 2005, 51, 1733–1746.Suche in Google Scholar

[34] Hossain MM, de Lasa HI. AIChE J. 2007. 53, 1817–1829.Suche in Google Scholar

[35] Al-Mulla A, Mathew J, Yeh SK, Gupta R. Compos. Part A: Appl. Sci. Manuf. 2008, 39, 204–217.Suche in Google Scholar

[36] Hao W, Yang W, Cai H, Huang Y. Polym. Test. 2010, 29, 527–533.Suche in Google Scholar

[37] Fan ZQ, Du ZX, Xu JT. Chin. J. Polym. Sci. 2008, 26, 589–595.Suche in Google Scholar

Received: 2014-2-20
Accepted: 2014-6-6
Published Online: 2014-7-7
Published in Print: 2014-12-1

©2014 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Original articles
  3. Curing kinetics of styrene-(ethylene-butylene)-styrene (SEBS) copolymer by peroxides in the presence of co-agents
  4. Synthesis and properties of novel high thermally stable polyimide-chrysotile composites as fire retardant materials
  5. Flame-resistant polymeric composite fibers based on nanocoating flame retardant: thermogravimetric study and production of α-Al2O3 nanoparticles by flame combustion
  6. Mechanical and morphological properties of high density polyethylene and polylactide blends
  7. Synthesis and characterization of magnetic Ni0.3 Zn0.7 Fe2 O4/polyvinyl acetate (PVAC) nanocomposite
  8. Effect of titanium nanofiller on the productivity and crystallinity of ethylene and propylene copolymer
  9. Mechanical properties of potassium hydroxide-pretreated Christmas palm fiber-reinforced polyester composites: characterization study, modeling and optimization
  10. Natural frequency response of laminated hybrid composite beams with and without cutouts
  11. Characterization of C2H2O4 doped PVA solid polymer electrolyte
  12. Development and characterization of homo, co and terpolyimides based on BPDA, BTDA, 6FDA and ODA with low dielectric constant
  13. Highly-filled hybrid composites prepared using centrifugal deposition
  14. Reinforcement of carboxylated acrylonitrile-butadiene rubber (XNBR) with graphene nanoplatelets with varying surface area
  15. Multiple melting behavior of poly(lactic acid)-hemp-silica composites using modulated-temperature differential scanning calorimetry
Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2014-0044/html
Button zum nach oben scrollen