Startseite Dynamic pressure analysis as a tool for determination of sharkskin instability by extrusion of molten polymers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dynamic pressure analysis as a tool for determination of sharkskin instability by extrusion of molten polymers

  • Mateusz Barczewski EMAIL logo , Roman Barczewski und Tomasz Sterzynski
Veröffentlicht/Copyright: 1. September 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Increasing requirements which extruded polymeric products should accomplish are imposed to quantitatively characterize the factors which have a considerable effect on extrusion stability. Investigation has been realized by means of a rheological measurement device including a single screw extruder, as well as a rheological die, signal acquisition and analysis system. Due to a specially designed measurement track and modern signal processing technique, the separation of cyclic instabilities from received signals (representing the course of melt pressure) and the definition of the influence on the extrusion process were feasible. This paper demonstrates an example of the application of two new methods which facilitate the detection of sharkskin instability, irrespective of visual observation of the extrudate. Autocorrelation function and frequency analysis based on a fast Fourier transformation (FFT) were used as numeric tools applied to register and control the extrusion process. The flow of molten polymer was studied under various processing conditions, giving an opportunity to split high frequency pressure fluctuations by means of the autocorrelation function and fast Fourier transform, and to create, in the future, a catalogue of data which can be used to define particular distortions in technological investigations.


Corresponding author: Mateusz Barczewski, Institute of Materials Technology, Polymer Division, Poznań University of Technology, ul. Piotrowo 3 60-965 Poznań, Poland

Received: 2011-12-14
Accepted: 2012-7-10
Published Online: 2012-09-01
Published in Print: 2012-10-01

©2012 by Walter de Gruyter Berlin Boston

Artikel in diesem Heft

  1. Masthead
  2. Masthead
  3. Review
  4. Influence of hydrostatic pressure and volumetric strain on the mechanical long term behavior of polymers
  5. Original Articles
  6. Dynamic pressure analysis as a tool for determination of sharkskin instability by extrusion of molten polymers
  7. Young’s modulus and prediction of plastics/elastomer blends
  8. Comparison of tribological performance of PEEK, UHMWPE, glass fiber reinforced PTFE and PTFE reinforced PEI composite materials under dry and lubricated conditions
  9. Study on the solidification kinetics of high-density polyethylene during thin-walled injection molding process
  10. The influence of level of interfacial healing on the weld-line strengths of injection molded parts
  11. Investigation on Nylon 66 silicate nanocomposites modified under gamma radiation
  12. Effect of mold surface antistiction treatment on microinjection replication quality using Cr-N/Zr-DLC thin-layer coating
  13. Estimation of thermal conductivity of PP/Al(OH)3/Mg(OH)2 composites
  14. Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers
  15. Copolymerization of 5-norbornene-2-metheneoxy-trimethylsilyl with methyl 5-norbornene-2-carboxylate catalyzed by a novel Ni(benzocyclohexan-ketonaphthylimino)2/B(C6F5)3) system
  16. A modified polyurethane elastomer using polyfunctional HTPB synthesized by in-situ nitroxide mediated polymerization of 1,3-butadiene
  17. Preparation and characterizations of ternary biodegradable blends composed of polylactide, poly(ε-caprolactone), and wood flour
  18. Polypropylene + boehmite nanocomposite fibers
  19. Development of PCL-PEG nanofibrous mats as alternative carriers for recombinant Chinese hamster ovary cells
Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2011-0157/pdf
Button zum nach oben scrollen