Abstract
Increasing requirements which extruded polymeric products should accomplish are imposed to quantitatively characterize the factors which have a considerable effect on extrusion stability. Investigation has been realized by means of a rheological measurement device including a single screw extruder, as well as a rheological die, signal acquisition and analysis system. Due to a specially designed measurement track and modern signal processing technique, the separation of cyclic instabilities from received signals (representing the course of melt pressure) and the definition of the influence on the extrusion process were feasible. This paper demonstrates an example of the application of two new methods which facilitate the detection of sharkskin instability, irrespective of visual observation of the extrudate. Autocorrelation function and frequency analysis based on a fast Fourier transformation (FFT) were used as numeric tools applied to register and control the extrusion process. The flow of molten polymer was studied under various processing conditions, giving an opportunity to split high frequency pressure fluctuations by means of the autocorrelation function and fast Fourier transform, and to create, in the future, a catalogue of data which can be used to define particular distortions in technological investigations.
©2012 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Masthead
- Review
- Influence of hydrostatic pressure and volumetric strain on the mechanical long term behavior of polymers
- Original Articles
- Dynamic pressure analysis as a tool for determination of sharkskin instability by extrusion of molten polymers
- Young’s modulus and prediction of plastics/elastomer blends
- Comparison of tribological performance of PEEK, UHMWPE, glass fiber reinforced PTFE and PTFE reinforced PEI composite materials under dry and lubricated conditions
- Study on the solidification kinetics of high-density polyethylene during thin-walled injection molding process
- The influence of level of interfacial healing on the weld-line strengths of injection molded parts
- Investigation on Nylon 66 silicate nanocomposites modified under gamma radiation
- Effect of mold surface antistiction treatment on microinjection replication quality using Cr-N/Zr-DLC thin-layer coating
- Estimation of thermal conductivity of PP/Al(OH)3/Mg(OH)2 composites
- Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers
- Copolymerization of 5-norbornene-2-metheneoxy-trimethylsilyl with methyl 5-norbornene-2-carboxylate catalyzed by a novel Ni(benzocyclohexan-ketonaphthylimino)2/B(C6F5)3) system
- A modified polyurethane elastomer using polyfunctional HTPB synthesized by in-situ nitroxide mediated polymerization of 1,3-butadiene
- Preparation and characterizations of ternary biodegradable blends composed of polylactide, poly(ε-caprolactone), and wood flour
- Polypropylene + boehmite nanocomposite fibers
- Development of PCL-PEG nanofibrous mats as alternative carriers for recombinant Chinese hamster ovary cells
Articles in the same Issue
- Masthead
- Masthead
- Review
- Influence of hydrostatic pressure and volumetric strain on the mechanical long term behavior of polymers
- Original Articles
- Dynamic pressure analysis as a tool for determination of sharkskin instability by extrusion of molten polymers
- Young’s modulus and prediction of plastics/elastomer blends
- Comparison of tribological performance of PEEK, UHMWPE, glass fiber reinforced PTFE and PTFE reinforced PEI composite materials under dry and lubricated conditions
- Study on the solidification kinetics of high-density polyethylene during thin-walled injection molding process
- The influence of level of interfacial healing on the weld-line strengths of injection molded parts
- Investigation on Nylon 66 silicate nanocomposites modified under gamma radiation
- Effect of mold surface antistiction treatment on microinjection replication quality using Cr-N/Zr-DLC thin-layer coating
- Estimation of thermal conductivity of PP/Al(OH)3/Mg(OH)2 composites
- Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers
- Copolymerization of 5-norbornene-2-metheneoxy-trimethylsilyl with methyl 5-norbornene-2-carboxylate catalyzed by a novel Ni(benzocyclohexan-ketonaphthylimino)2/B(C6F5)3) system
- A modified polyurethane elastomer using polyfunctional HTPB synthesized by in-situ nitroxide mediated polymerization of 1,3-butadiene
- Preparation and characterizations of ternary biodegradable blends composed of polylactide, poly(ε-caprolactone), and wood flour
- Polypropylene + boehmite nanocomposite fibers
- Development of PCL-PEG nanofibrous mats as alternative carriers for recombinant Chinese hamster ovary cells