Startseite The past is the future: from natural acid-base indicators to natural reagents in sustainable analytical chemistry
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The past is the future: from natural acid-base indicators to natural reagents in sustainable analytical chemistry

  • Siripat Suteerapataranon EMAIL logo , Kanokwan Kiwfo , Pei Meng Woi , Chalermpong Saenjum und Kate Grudpan
Veröffentlicht/Copyright: 3. Mai 2024

Abstract

This article reviews the use of natural resources in analytical chemistry throughout history. Plant extracts were employed as indicators in chemistry for identifying the acidity or alkalinity of liquids as early as the 1650s. Later, as the industrial revolution altered people’s lives, synthetic chemicals were used instead. Modern techniques of analysis have replaced conventional ones as a result of advancements in physics and technology. The industrial revolution was an era of excitement until the toxic pollutants released from industries severely damaged people and the environment. The concepts of green chemistry and green analytical chemistry were proposed as potential solutions to the problems. The use of natural extracts as chemical analysis reagents has been reconsidered recently as a sustainable alternative. While new technologies such as artificial intelligence (AI) will influence future trends in analytical chemistry development, the primary goal is to move toward sustainable analytical chemistry, which includes using natural reagents and reducing the amount of chemicals consumed and waste produced.


Corresponding author: Siripat Suteerapataranon, Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand, e-mail:

Article note: A collection of invited papers on the activities and actions towards a sustainable future.


Acknowledgments

This work is dedicated to the 60th anniversary of Chiang Mai University.

  1. Research funding: The authors acknowledge Chiang Mai University through the Research Center for Innovation in Analytical Science and Technology for Biodiversity-based Economic and Society (I-ANALY-S-T_B.BES-CMU) (contract No. RG26/2566). We are also grateful to the Alexander von Humboldt Foundation for the indirect support provided to K. Kiwfo and K. Grudpan.

References

[1] R. Yao, C. He, P. Xiao. Chin. Herb. Med. 15, 6 (2023), https://doi.org/10.1016/j.chmed.2022.12.002.Suche in Google Scholar PubMed PubMed Central

[2] S. Khan, T. H. Masoodi, N. A. Pala, M. A. Islam, A. Raja, S. Z. Rizvi. Acta Ecol. Sin. (2023), https://doi.org/10.1016/j.chnaes.2023.07.011, In press.Suche in Google Scholar

[3] X. Wu, S. Dong, H. Chen, M. Guo, Z. Sun, H. Luo. Chin. Herb. Med. 15, 369 (2023), https://doi.org/10.1016/j.chmed.2023.03.002.Suche in Google Scholar PubMed PubMed Central

[4] H. Hassan. Chimia 69, 622 (2015), https://doi.org/10.2533/chimia.2015.622.Suche in Google Scholar PubMed

[5] P. A. O’Hare. Robert boyle: pioneer of experimental chemistry, in Books at Iowa, pp. 6–20, Friends of the University of Iowa Libraries, Iowa (1988).10.17077/0006-7474.1149Suche in Google Scholar

[6] A. Albert BakerJr. Chymia 9, 147 (1964), https://doi.org/10.2307/27757238.Suche in Google Scholar

[7] F. Szabadavary. J. Chem. Educ. 41, 285 (1964), https://doi.org/10.1021/ed041p285.Suche in Google Scholar

[8] D. A. Ahumada Forigua, J. Meija. Anal. Bioanal. Chem. 411, 1 (2019), https://doi.org/10.1007/s00216-018-1430-y.Suche in Google Scholar PubMed

[9] C. M. BeckII. Anal. Chem. 63, 993A (1991), https://doi.org/10.1021/ac00020a725.Suche in Google Scholar

[10] M. G. Rinsler. J. Clin. Pathol. 34, 287 (1981), https://doi.org/10.1136/jcp.34.3.287.Suche in Google Scholar PubMed PubMed Central

[11] D. W. Hutchings. Chapter 6 – Isaac Newton, 1642–1727, in Late Seventeenth Century Scientists, D. Hutchings (Ed.), pp. 158–183, Elsevier, Amsterdam (1969).10.1016/B978-0-08-013359-1.50011-5Suche in Google Scholar

[12] L. Rosenfeld. Chapter 9 colorimetry and photometry, in Origins of Clinical Chemistry: The Evolution of Protein Analysis, p. 115, Elsevier Science, Amsterdam (2012).Suche in Google Scholar

[13] D. W. Ball. Chapter 5 the shapes of spectral signals, in The Basics of Spectroscopy, pp. 67–69, SPIE-The International Society for Optical Engineering, Washington (2001).Suche in Google Scholar

[14] J. H. Yoe. Anal. Chem. 29, 1246 (1957), https://doi.org/10.1021/ac60129a001.Suche in Google Scholar

[15] M. G. Mellon. Anal. Chem. 24, 924 (1952), https://doi.org/10.1021/ac60066a002.Suche in Google Scholar

[16] S. Kumar, S. Jain. J. Chem. 2013, 1 (2013), https://doi.org/10.1155/2013/957647.Suche in Google Scholar

[17] P. P. Groumpos. IFAC-PapersOnLine 54, 464 (2021), https://doi.org/10.1016/j.ifacol.2021.10.492.Suche in Google Scholar

[18] F. Chemat, M. Abert-Vian, A. S. Fabiano-Tixier, J. Strube, L. Uhlenbrock, V. Gunjevic, G. Cravotto. TrAC, Trends Anal. Chem. 118, 248 (2019), https://doi.org/10.1016/j.trac.2019.05.037.Suche in Google Scholar

[19] P. T. Anastas. Origins and early history of green chemistry, in Series on Chemistry, Energy and the Environment, pp. 1–17, World Scientific, Singapore (2018).10.1142/9789813228115_0001Suche in Google Scholar

[20] D. A. Gill, T. L. Mix. Chapter 25 – love canal: a classic case study of a contaminated community, in An Introduction to Interdisciplinary Toxicology, C. N. Pope, J. Liu (Eds.), pp. 341–352, Elsevier, Cambridge (2020).10.1016/B978-0-12-813602-7.00025-9Suche in Google Scholar

[21] A. Linthorst. Found. Chem. 12, 55 (2010), https://doi.org/10.1007/s10698-009-9079-4.Suche in Google Scholar

[22] B. L. Long. International environmental issues and the OECD 1950–2000 an historical perspective, in An Historical Perspective: An Historical Perspective, Bill L. Long (Ed.), OECD Publishing, Paris (2000).Suche in Google Scholar

[23] P. T. Anastas, J. C. Warner. Green Chemistry: Theory and Practice, Oxford University Press, Oxford, England, New York (1998).Suche in Google Scholar

[24] I. S. Goldstein. Biomass availability and utility for chemicals, in Organic Chemicals From Biomass, p. 2, CRC Press, Florida (2018).10.1201/9781351075251Suche in Google Scholar

[25] S. Armenta, S. Garrigues, M. de la Guardia, F. A. Esteve-Turrillas. Green analytical chemistry. In Encyclopedia of Analytical Science, P. Worsfold, C. Poole, A. Townshend, M. Miró (Eds.), pp. 356–361, Academic Press, Oxford, 3rd ed. (2019).Suche in Google Scholar

[26] J. Ṙuz̆ic̆ka, E. H. Hansen. Anal. Chim. Acta 78, 145 (1975), https://doi.org/10.1016/S0003-2670(01)84761-9.Suche in Google Scholar

[27] C. Sparr Eskilsson, E. Björklund. J. Chromatogr. A 902, 227 (2000), https://doi.org/10.1016/S0021-9673(00)00921-3.Suche in Google Scholar PubMed

[28] J. Ruzicka, G. D. Marshall. Anal. Chim. Acta 237, 329 (1990), https://doi.org/10.1016/S0003-2670(00)83937-9.Suche in Google Scholar

[29] J. Ruzicka. Analyst 125, 1053 (2000), https://doi.org/10.1039/B001125H.Suche in Google Scholar

[30] J. Jakmunee, L. Patimapornlert, S. Suteerapataranon, N. Lenghor, K. Grudpan. Talanta 65, 789 (2005), https://doi.org/10.1016/j.talanta.2004.08.007.Suche in Google Scholar PubMed

[31] S. Armenta, S. Garrigues, M. de la Guardia. TrAC, Trends Anal. Chem. 27, 497 (2008), https://doi.org/10.1016/j.trac.2008.05.003.Suche in Google Scholar

[32] A. Gałuszka, Z. Migaszewski, J. Namieśnik. TrAC, Trends Anal. Chem. 50, 78 (2013), https://doi.org/10.1016/j.trac.2013.04.010.Suche in Google Scholar

[33] K. Grudpan, S. K. Hartwell, S. Lapanantnoppakhun, I. McKelvie. Anal. Methods 2, 1651 (2010), https://doi.org/10.1039/C0AY00253D.Suche in Google Scholar

[34] T. Settheeworrarit, S. K. Hartwell, S. Lapanatnoppakhun, J. Jakmunee, G. D. Christian, K. Grudpan. Talanta 68, 262 (2005), https://doi.org/10.1016/j.talanta.2005.07.039.Suche in Google Scholar PubMed

[35] K. Kiwfo, P. M. Woi, C. Saenjum, T. Sukkho, K. Grudpan, J. Malays. Anal. Sci. 26, 399 (2022).Suche in Google Scholar

[36] A. B. Monji, E. Zolfonoun, S. J. Ahmadi. Toxicol. Environ. Chem. 91, 1229 (2009), https://doi.org/10.1080/02772240802646962.Suche in Google Scholar

[37] P. Pinyou, S. K. Hartwell, J. Jakmunee, S. Lapanantnoppakhun, K. Grudpan. Anal. Sci. 26, 619 (2010), https://doi.org/10.2116/analsci.26.619.Suche in Google Scholar PubMed

[38] K. Grudpan, S. Hartwell, W. Wongwilai, S. Grudpan, S. Lapanantnoppakhun. Talanta 84, 1396 (2011), https://doi.org/10.1016/j.talanta.2011.03.090.Suche in Google Scholar PubMed

[39] S. Tontrong, S. Khonyoung, J. Jakmunee. Food Chem. 132, 624 (2012), https://doi.org/10.1016/j.foodchem.2011.10.100.Suche in Google Scholar PubMed

[40] P. Insain, S. Khonyoung, P. Sooksamiti, S. Lapanantnoppakhun, J. Jakmunee, K. Grudpan, K. Zajicek, S. K. Hartwell. Anal. Sci. 29, 655 (2013), https://doi.org/10.2116/analsci.29.655.Suche in Google Scholar PubMed

[41] V. B. V. Maciel, C. M. P. Yoshida, T. T. Franco. Carbohydr. Polym. 132, 537 (2015), https://doi.org/10.1016/j.carbpol.2015.06.047.Suche in Google Scholar PubMed

[42] W. Siriangkhawut, Y. Khanhuathon, P. Chantiratikul, K. Ponhong, K. Grudpan. Anal. Sci. 32, 329 (2016), https://doi.org/10.2116/analsci.32.329.Suche in Google Scholar PubMed

[43] A. Costa, H. Sulistyarti, S. Sabarudin. ARPN J. Eng. Appl. Sci. 12, 7274 (2017).Suche in Google Scholar

[44] S. Supharoek, K. Ponhong, K. Grudpan. Talanta 171, 236 (2017), https://doi.org/10.1016/j.talanta.2017.05.004.Suche in Google Scholar PubMed

[45] N. Jaikrajang, S. Kruanetr, D. J. Harding, P. Rattanakit. Spectrochim. Acta, Part A 204, 726 (2018), https://doi.org/10.1016/j.saa.2018.06.109.Suche in Google Scholar PubMed

[46] S. Supharoek, K. Ponhong, W. Siriangkhawut, K. Grudpan. J. Food Drug Anal. 26, 583 (2018), https://doi.org/10.1016/j.jfda.2017.06.007.Suche in Google Scholar PubMed PubMed Central

[47] K. Kiwfo, W. Wongwilai, P. Paengnakorn, S. Boonmapa, S. Sateanchok, K. Grudpan. Talanta 181, 1 (2018), https://doi.org/10.1016/j.talanta.2017.12.056.Suche in Google Scholar PubMed

[48] W. Siriangkhawut, K. Ponhong, K. Grudpan. Malays. J. Anal. Sci. 23, 595 (2019), https://doi.org/10.17576/mjas-2019-2304-05.Suche in Google Scholar

[49] K. O. Alessio, M. Voss, E. M. M. Flores, A. B. Costa, F. A. Duarte, J. S. Barin. Talanta 204, 266 (2019), https://doi.org/10.1016/j.talanta.2019.05.091.Suche in Google Scholar PubMed

[50] W. Siriangkhawut, P. Didpinrum, Y. Khanhuathon, K. Ponhong, K. Grudpan. Anal. Lett. 53, 887 (2020), https://doi.org/10.1080/00032719.2019.1685530.Suche in Google Scholar

[51] P. Jaikang, P. Paengnakorn, K. Grudpan. Microchem. J. 152, 104283 (2020), https://doi.org/10.1016/j.microc.2019.104283.Suche in Google Scholar

[52] E. Whitford, W. Nzobigeza, S. K. Hartwell. Anal. Lett. 53, 2465 (2020), https://doi.org/10.1080/00032719.2020.1745224.Suche in Google Scholar

[53] S. Rahman, N. Saha, S. Sarwar, A. Shamim, N. Shaheen. J. Water Health 20, 1644 (2022), https://doi.org/10.2166/wh.2022.102.Suche in Google Scholar PubMed

[54] K. Kesonkan, C. Yeerum, K. Kiwfo, K. Grudpan, M. Vongboot. Molecules 27, 8622 (2022), https://doi.org/10.3390/molecules27238622.Suche in Google Scholar PubMed PubMed Central

[55] K. Kiwfo, C. Saenjum, S. Aphichatpanichakul, K. Grudpan. Talanta Open 7, 100193 (2023), https://doi.org/10.1016/j.talo.2023.100193.Suche in Google Scholar

[56] K. Kesonkan, S. Apichai, K. Kiwfo, C. Saenjum, M. Vongboot, K. Grudpan. Sustain. Chem. Pharm. 37, 101411 (2024), https://doi.org/10.1016/j.scp.2023.101411.Suche in Google Scholar

[57] C. Turner. Pure Appl. Chem. 85, 2217 (2013), https://doi.org/10.1351/pac-con-13-02-05.Suche in Google Scholar

[58] J. Płotka-Wasylka, H. M. Mohamed, A. Kurowska-Susdorf, R. Dewani, M. Y. Fares, V. Andruch, Curr. Opin. Green Sustain. Chem. 31, 100508 (2021), https://doi.org/10.1016/j.cogsc.2021.100508.Suche in Google Scholar

[59] K. Kiwfo, C. Yeerum, P. Issarangkura Na Ayutthaya, K. Kesonkan, S. Suteerapataranon, P. Panitsupakamol, D. Chinwong, P. Paengnakorn, S. Chinwong, N. Kotchabhakdi, C. Saenjum, M. Vongboot, K. Grudpan. Sustainability 13, 11147 (2021), https://doi.org/10.3390/su132011147.Suche in Google Scholar

[60] K. Kiwfo, S. Suteerapataranon, I. D. McKelvie, P. Meng Woi, S. D. Kolev, C. Saenjum, G. D. Christian, K. Grudpan. Microchem. J. 193, 109026 (2023), https://doi.org/10.1016/j.microc.2023.109026.Suche in Google Scholar

[61] S. Lapanantnoppakhun, U. Tengjaroensakul, P. Mungkornasawakul, C. Puangpila, S. Kittiwachana, J. Saengtempiam, S. Hartwell. J. Chem. Educ. 97, 207 (2019), https://doi.org/10.1021/acs.jchemed.9b00530.Suche in Google Scholar

[62] P. Rattanakit, R. Maungchang. J. Chem. Educ. 96, 756 (2019), https://doi.org/10.1021/acs.jchemed.8b00817.Suche in Google Scholar

[63] M. Kanna, S. Somnam, W. Wongwilai, K. Grudpan. Anal. Sci. 35, 347 (2019), https://doi.org/10.2116/analsci.18N019.Suche in Google Scholar PubMed

[64] A. Fatoni, M. D. Anggraeni, L. Z. Zulhidayah. IOP Conf. Ser. Mater. Sci. Eng. 509, 012010 (2019), https://doi.org/10.1088/1757-899X/509/1/012010.Suche in Google Scholar

[65] A. Sabarudin, D. Indrayani. IOP Conf. Ser. Mater. Sci. Eng. 546, 032027 (2019), https://doi.org/10.1088/1757-899X/546/3/032027.Suche in Google Scholar

[66] N. Kotchabhakdi, C. Seanjum, K. Kiwfo, K. Grudpan. Microchem. J. 162, 105860 (2021), https://doi.org/10.1016/j.microc.2020.105860.Suche in Google Scholar

[67] S. Kruanetr, K. Prasertboonyai. Curr. Appl. Sci. Technol. 21, 51 (2021), https://doi.org/10.14456/cast.2021.8.Suche in Google Scholar

[68] P. Reanpang, T. Pun-uam, J. Jakmunee, S. Khonyoung. J. Anal. Methods Chem. 1, 1 (2021), https://doi.org/10.1155/2021/6665848.Suche in Google Scholar PubMed PubMed Central

[69] N. Youngvises, D. H. Nguyen, T. Charoenrat, S. Kradtap-Hartwell, J. Jakmunee, A. AlSuhaimi. Chiang Mai J. Sci. 48, 221 (2021).Suche in Google Scholar

[70] K. Kiwfo, P. M. Woi, C. Seanjum, K. Grudpan. Talanta 236, 122848 (2022), https://doi.org/10.1016/j.talanta.2021.122848.Suche in Google Scholar PubMed

[71] B. Weerasuk, S. Supharoek, K. Grudpan, K. Ponhong. J. Iran. Chem. Soc. 19, 741 (2022), https://doi.org/10.1007/s13738-021-02337-2.Suche in Google Scholar

[72] C. Yeerum, P. Issarangkura Na Ayutthaya, K. Kesonkan, K. Kiwfo, S. Suteerapataranon, P. Panitsupakamol, P. Paengnakorn, D. Chinwong, S. Chinwong, C. Saenjum, M. Vongboot, K. Grudpan. Sustainability 14, 3314 (2022), https://doi.org/10.3390/su14063314.Suche in Google Scholar

[73] P. Sari, A. Daud, H. Sulistyarti, A. Sabarudin, D. Nacapricha. Anal. Sci. 38, 759 (2022), https://doi.org/10.1007/s44211-022-00092-9.Suche in Google Scholar PubMed

[74] S. Armenta, F. A. Esteve-Turrillas, S. Garrigues, M. de la Guardia. in Green Approaches for Chemical Analysis, pp. 1–38, Elsevier Science, Amsterdam (2022).10.1016/j.greeac.2022.100007Suche in Google Scholar

[75] Z. J. Baum, X. Yu, P. Y. Ayala, Y. Zhao, S. P. Watkins, Q. Zhou. J. Chem. Inf. Model. 61, 3197 (2021), https://doi.org/10.1021/acs.jcim.1c00619.Suche in Google Scholar PubMed

Published Online: 2024-05-03
Published in Print: 2024-09-25

© 2024 IUPAC & De Gruyter

Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0204/html
Button zum nach oben scrollen