Startseite Renewable carbon resource from biomass: building molecular architectures from furanic platforms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Renewable carbon resource from biomass: building molecular architectures from furanic platforms

  • Gloria V. López ORCID logo EMAIL logo und Williams Porcal ORCID logo EMAIL logo
Veröffentlicht/Copyright: 15. Juli 2024

Abstract

Currently, we find ourselves with the urgent need for chemistry to exert a substantial positive influence on environmental impact, by means of products and chemical processes. To achieve these objectives, we must pay special attention in terms of resource sustainability, considering factors such as life cycle assessments and minimizing carbon footprints. Biomass obtained from organic matter found in plants as well as agricultural and industrial waste, represents the most abundant reserve of renewable materials on our planet. In this perspective we highlight the research and innovation possibilities provided by renewable raw materials obtained from biomass within the domain of organic synthesis toward sustainable development. We focus our discussion on different reactions in the field of organic chemistry, primarily employing furanic platforms as renewable compounds derived from cellulosic biomass. The main aim is to generate high-value products, with a special emphasis on potential development of new pharmaceuticals.


Corresponding authors: Gloria V. López, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, 11800, Montevideo, Uruguay; and Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay, e-mail: ; and Williams Porcal, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. General Flores 2124, 11800, Montevideo, Uruguay; and Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay, e-mail:
Article note: A collection of invited papers on the activities and actions towards a sustainable future.

References

[1] Keijer, T.; Bakker, V.; Slootweg, J. C. Nat. Chem. 2019, 11, 190–195. https://doi.org/10.1038/s41557-019-0226-9.Suche in Google Scholar PubMed

[2] Kümmerer, K.; Clark, J. H.; Zuin, V. G. Science 2020, 367, 369–370. https://doi.org/10.1126/science.aba4979.Suche in Google Scholar PubMed

[3] Nicolaou, K. C. Isr. J. Chem. 2018, 58, 104–113. https://doi.org/10.1002/ijch.201700121.Suche in Google Scholar

[4] Nicolaou, K. C. Proc. R. Soc. A 2014, 470 (1), 20130690. https://doi.org/10.1098/rspa.2013.0690.Suche in Google Scholar PubMed PubMed Central

[5] Nising, C. F.; von Nussbaum, F. Eur. J. Org Chem. 2022, 17 (1). https://doi.org/10.1002/ejoc.202200252.Suche in Google Scholar

[6] Yue, K.; Zhou, Q.; Bird, R.; Zhu, L.; Zhang, D.; Li, D.; Zou, L.; Yang, J.; Fu, X.; Georges, G.P. J. Org. Chem. 2023, 88, 4031–4035. https://doi.org/10.1021/acs.joc.2c03057.Suche in Google Scholar PubMed

[7] Castiello, C.; Junghanns, P.; Mergel, A.; Jacob, C.; Ducho, C.; Valente, S.; Rotili, D.; Fioravanti, R.; Zwergel, C.; Mai, A. Green Chem. 2023, 25, 2109–2169. https://doi.org/10.1039/d2gc03772f.Suche in Google Scholar

[8] Zimmerman, J. B.; Anastas, P. T.; Erythropel, H. C.; Leitner, W. Science 2020, 367, 397–400. https://doi.org/10.1126/science.aay3060.Suche in Google Scholar PubMed

[9] Ganesh, K. N.; Zhang, D.; Miller, S. J.; Rossen, K.; Chirik, P. J.; Kozlowski, M. C.; Zimmerman, J. B.; Brooks, B. W.; Savage, P. E.; Allen, D. T.; Voutchkova-Kostal, A. M. Org. Process Res. Dev. 2021, 25, 1455–1459. https://doi.org/10.1021/acs.oprd.1c00216.Suche in Google Scholar

[10] Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L.Jr.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaksh, A.; Zhang, T. Y. Green Chem. 2007, 9 (411), 411–420. https://doi.org/10.1039/b703488c.Suche in Google Scholar

[11] Schaub, T. Chem. Eur. J. 2021, 27, 1865–1869. https://doi.org/10.1002/chem.202003544.Suche in Google Scholar PubMed

[12] Chen, T.; Kim, H.; Pan, S.; Tseng, P.; Lin, Y.; Chiang, P. Sci. Tot. Envir. 2020, 716, 136998. https://doi.org/10.1016/j.scitotenv.2020.136998.Suche in Google Scholar PubMed

[13] Mestres, R. Educ. Quím. 2013, 24, 103–112. https://doi.org/10.1016/S0187-893X(13)72503-5.Suche in Google Scholar

[14] Erythropel, H. C.; Zimmerman, J. B.; de Winter, T. M.; Petitjean, L.; Melnikov, F.; Lam, C. H.; Lounsbury, A. W.; Mellor, K. E.; Janković, N. Z.; Tu, Q.; Pincus, L. N.; Falinski, M. M.; Shi, W.; Coish, P.; Plata, De. L.; Anastas, P. T. Green Chem. 2018, 20, 1929–1961. https://doi.org/10.1039/c8gc00482j.Suche in Google Scholar

[15] He, M.; Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52 (2), 9620–9633. https://doi.org/10.1002/anie.201209384.Suche in Google Scholar PubMed

[16] Queneau, Y.; Han, B. Innovation 2022, 3, 100184. https://doi.org/10.1016/j.xinn.2021.100184.Suche in Google Scholar PubMed PubMed Central

[17] Groß, J.; Kühlborn, J.; Opatz, T. Green Chem. 2020, 22, 4411–4425. https://doi.org/10.1039/d0gc01484b.Suche in Google Scholar

[18] Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411–2502. https://doi.org/10.1021/cr050989d.Suche in Google Scholar PubMed

[19] Palkovits, R.; Delidovich, I. Phil. Trans. R. Soc. A. 2017, 376 (64), 20170064. https://doi.org/10.1098/rsta.2017.0064.Suche in Google Scholar PubMed PubMed Central

[20] Tuck, C.O.; Pérez, E.; Horváth, I.T.; Sheldon, R.A.; Poliakoff, M. Science 2012, 337, 695–699. https://doi.org/10.1126/science.1218930.Suche in Google Scholar PubMed

[21] Brun, N.; Hesemann, P.; Esposito, D. Chem. Sci. 2017, 8 (4724), 4724–4738. https://doi.org/10.1039/c7sc00936d.Suche in Google Scholar PubMed PubMed Central

[22] Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538–1558. https://doi.org/10.1039/c1cs15147a.Suche in Google Scholar PubMed

[23] Kühlborn, J.; Groß, J.; Opatz, T. Nat. Prod. Rep. 2020, 37, 380–424. https://doi.org/10.1039/c9np00040b.Suche in Google Scholar PubMed

[24] Koh, P.F.; Loh, T.P. Green Chem. 2015, 17, 3746–3750. https://doi.org/10.1039/c5gc00900f.Suche in Google Scholar

[25] Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Green Chem. 2014, 16, 2958–2975. https://doi.org/10.1039/C4GC00013G.Suche in Google Scholar

[26] Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39 (3168), 3168–3210. https://doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U.10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-USuche in Google Scholar

[27] Shaaban, S.; Abdel-Wahab, B.F. Mol. Divers. 2016, 20, 233–254. https://doi.org/10.1007/s11030-015-9602-6.Suche in Google Scholar

[28] Fan, W.; Queneau, Y.; Popowycz, F. Green Chem. 2018, 20 (485), 485–492. https://doi.org/10.1039/C7GC03425C.Suche in Google Scholar

[29] Golubev, P.; Pankova, A.; Krasavin, M. Tetrahedron Lett. 2019, 60, 1578–1581. https://doi.org/10.1016/j.tetlet.2019.05.018.Suche in Google Scholar

[30] Martinho, L.A.; Rosalba, T.P.F.; Sousa, G.G.; Gatto, C.C.; Politi, J.R.S.; Andrade, C.K.Z. Mol. Divers. 2024, 28, 111–123. https://doi.org/10.1007/s11030-023-10618-6.Suche in Google Scholar

[31] de la Sovera, V.; López, G.V.; Porcal, W. Eur. J. Org Chem. 2022, 2022, e202101369. https://doi.org/10.1002/ejoc.202101369.Suche in Google Scholar

[32] Chacón-Huete, F.; Messina, C.; Cigana, B.; Forgione, P. ChemSusChem 2022, 15, e202200328. https://doi.org/10.1002/cssc.202200328.Suche in Google Scholar PubMed

[33] Kim, H.; Kim, J.; Won, W. ChemSusChem 2022, 15, e202200240. https://doi.org/10.1002/cssc.202200240.Suche in Google Scholar PubMed

[34] Espro, C.; Paone, E.; Mauriello, F.; Gotti, R.; Uliassi, E.; Bolognesi, M.L.; Rodríguez-Padrónae, D.; Luque, R. Chem. Soc. Rev. 2021, 50, 11191–11207. https://doi.org/10.1039/D1CS00524C.Suche in Google Scholar

[35] Pengxin Yu, P.; Sun, G.; Xiong, L.; Zheng, B.; Li, T.; Jiang, J.; Wang, Y.; Yang, W. Mol. Cat. 2022, 521, 112187. https://doi.org/10.1016/j.mcat.2022.112187.Suche in Google Scholar

[36] Mascal, M. ACS Sustain. Chem. Eng. 2019, 7, 5588–5601. https://doi.org/10.1021/acssuschemeng.8b06553.Suche in Google Scholar

[37] Flourat, A.L.; Peru, A.A.M.; Teixeira, A.R.S.; Brunissen, F.; Allais, F. Green Chem. 2015, 17, 404–412. https://doi.org/10.1039/C4GC01231C.Suche in Google Scholar

[38] Camp, J. E.; Greatrex, B. W. Front. Chem. 2022, 10 (1), 902239. https://doi.org/10.3389/fchem.2022.902239.Suche in Google Scholar PubMed PubMed Central

Published Online: 2024-07-15
Published in Print: 2024-09-25

© 2024 IUPAC & De Gruyter

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0230/html
Button zum nach oben scrollen