Abstract
Perovskites materials, due to their peculiar electronic and ionic properties, play a key role in the development of hydrogen-based technologies. Their flexible structure enables an easy tuning of various physical-chemical characteristics, such as ionic and electronic conductivity and redox active sites concentration, fundamental for these applications. Moreover, the same structure can exhibit different properties that can synergically act to improve the performance of the material for a specific application.
-
Research ethics: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The author states no conflict of interest.
-
Research funding: The funding under the frame of “Canvas Project” granted by the MASE Ministery of Italy is gratefully acknowledged.
-
Data availability: Not applicable.
References
[1] M. Zhang. Mater. Today 49, 351 (2021).10.1016/j.mattod.2021.05.004Suche in Google Scholar
[2] J. B. Goodenough. Rep. Prog. Phys. 67, 1915 (2004), https://doi.org/10.1088/0034-4885/67/11/r01.Suche in Google Scholar
[3] A. Moure. Appl. Sci. 8(1), 62 (2018), https://doi.org/10.3390/app8010062.Suche in Google Scholar
[4] H. Zhao, H. Wang, Z. Cheng, Q. Fu, H. Tao, Z. Ma. Ceram. Int. 44, 13226 (2018), https://doi.org/10.1016/j.ceramint.2018.04.148.Suche in Google Scholar
[5] S. Supriya. Coord. Chem. Rev. 479, 215010 (2023), https://doi.org/10.1016/j.ccr.2022.215010.Suche in Google Scholar
[6] X. Liu, L. Xu. Ceram. Int. 43, 12372 (2017).10.1016/j.ceramint.2017.06.103Suche in Google Scholar
[7] T. M. Khader. J. Environ. Chem. Eng. 10, 713 (2022).10.1007/s10098-021-02159-zSuche in Google Scholar
[8] Z. Chen. Appl. Catal., B 199, 241 (2016).10.1016/j.apcatb.2016.06.036Suche in Google Scholar
[9] G. Naresh, T. K. Mandal. ACS Appl. Mater. Interfaces 6, 21000 (2014), https://doi.org/10.1021/am505767c.Suche in Google Scholar PubMed
[10] T. Jardel, A. C. Caballero, M. Villegas. J. Ceram. Soc. Jpn. 116, 511 (2008).10.2109/jcersj2.116.511Suche in Google Scholar
[11] S. Das, S. Swain, R. N. P. Choudhary. J. Solid State Chem. 325, 124121 (2023), https://doi.org/10.1016/j.jssc.2023.124121.Suche in Google Scholar
[12] S. K. Badge, A. V. Deshpande. Sens. Actuators, A 78(2–3), 88 (1999).10.1016/S0924-4247(99)00223-XSuche in Google Scholar
[13] B. H. Park. Nature 401, 682 (1999).10.1038/44352Suche in Google Scholar
[14] E. Mercadelli, N. Sangiorgi, S. Fabbri, A. Sangiorgi, A. Sanson. Sol. Energy Mater. Sol. Cells 267, 112732 (2024), https://doi.org/10.1016/j.solmat.2024.112732.Suche in Google Scholar
[15] A. K. Jena, A. Kulkarni, T. Miyasaka. Chem. Rev. 119, 3036 (2019), https://doi.org/10.1021/acs.chemrev.8b00539.Suche in Google Scholar PubMed
[16] R. Sharif, A. Khalid, S. W. Ahmad, A. Rehman, H. G. Qutab, H. H. Akhtar. Nanoscale Adv. 5, 3803 (2023), https://doi.org/10.1039/d3na00319a.Suche in Google Scholar PubMed PubMed Central
[17] A. Sanson, A. Gondolini. Solid oxide fuel cells. in Materials Science and Materials Engineering, Elsevier (2020).10.1016/B978-0-12-818542-1.00007-2Suche in Google Scholar
[18] P. Berg. J. Fuel Cell Sci. Technol. 5(2), 021007 (2008).10.1115/1.2821599Suche in Google Scholar
[19] S. Hossain, A. M. Abdalla, S. N. B. Jamain, J. H. Zaini, A. K. Azad. Renewable Sustainable Energy Rev. 79, 750 (2017), https://doi.org/10.1016/j.rser.2017.05.147.Suche in Google Scholar
[20] S. Choi, T. C. Davenport, S. M. Haile. Energy Environ. Sci. 12, 206 (2019), https://doi.org/10.1039/c8ee02865f.Suche in Google Scholar
[21] C. Duan. Appl. Phys. Rev. 7, 011314 (2020).Suche in Google Scholar
[22] W. Zając. Open Chem. 11, 471 (2013).10.2478/s11532-012-0144-9Suche in Google Scholar
[23] M. K. Hossain, M. C. Biswas, R. K. Chanda, M. H. K. Rubel, M. I. Khan, K. Hashizume. Emergent Mater. 4, 999 (2021), https://doi.org/10.1007/s42247-021-00230-5.Suche in Google Scholar
[24] A. Gondolini, A. Bartoletti, E. Mercadelli, P. Gramazio, A. Fasolini, F. Basile. J. Membr. Sci. 684, 121865 (2023), https://doi.org/10.1016/j.memsci.2023.121865.Suche in Google Scholar
[25] B. Dai, G. M. Biesold, M. Zhang, H. Zou, Y. Ding, Z. L. Wang. Chem. Soc. Rev. 50, 13646 (2021), https://doi.org/10.1039/d1cs00506e.Suche in Google Scholar PubMed
[26] Y. Hu, Y. Zhang, Y. Chang, R. L. Snyder, Z. L. Wang. ACS Nano 4, 4220 (2010), https://doi.org/10.1021/nn1010045.Suche in Google Scholar PubMed
[27] Z. L. Wang. Adv. Mater. 24, 4632 (2012), https://doi.org/10.1002/adma.201104365.Suche in Google Scholar PubMed
© 2024 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- Editorial
- The Global Scenario and Challenges of Radioactive Waste in the Marine Environment
- Special topic papers
- A critical review of the quantification, analysis and detection of radionuclides in the environment using diffusive gradients in thin films (DGT): advances and perspectives
- Overview of marine radionuclides from sampling to monitoring
- Radionuclides in marine sediment
- Speciation and mobility of uranium isotopes in the Shu River: impacts for river to sea transfer
- Impact of fluvial discharge on 137Cs in the ocean following the Fukushima Daiichi Nuclear Power Station accident
- Transport of radioactive materials from terrestrial to marine environments in Fukushima over the past decade
- The transfer of irradiated uranium from the Irish Sea coast to the terrestrial environment in Cumbria, UK
- Public knowledge, sentiments, and perceptions of low dose radiation (LDR) and power production, with special reference to reactor accidents
- An exercise-based international polymer syllabus
- Conference paper
- Perovskite: a key structure for a sustainable hydrogen economy
Artikel in diesem Heft
- Frontmatter
- Editorial
- The Global Scenario and Challenges of Radioactive Waste in the Marine Environment
- Special topic papers
- A critical review of the quantification, analysis and detection of radionuclides in the environment using diffusive gradients in thin films (DGT): advances and perspectives
- Overview of marine radionuclides from sampling to monitoring
- Radionuclides in marine sediment
- Speciation and mobility of uranium isotopes in the Shu River: impacts for river to sea transfer
- Impact of fluvial discharge on 137Cs in the ocean following the Fukushima Daiichi Nuclear Power Station accident
- Transport of radioactive materials from terrestrial to marine environments in Fukushima over the past decade
- The transfer of irradiated uranium from the Irish Sea coast to the terrestrial environment in Cumbria, UK
- Public knowledge, sentiments, and perceptions of low dose radiation (LDR) and power production, with special reference to reactor accidents
- An exercise-based international polymer syllabus
- Conference paper
- Perovskite: a key structure for a sustainable hydrogen economy