Startseite Perovskite: a key structure for a sustainable hydrogen economy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Perovskite: a key structure for a sustainable hydrogen economy

  • Alessandra Sanson EMAIL logo
Veröffentlicht/Copyright: 27. Juni 2024

Abstract

Perovskites materials, due to their peculiar electronic and ionic properties, play a key role in the development of hydrogen-based technologies. Their flexible structure enables an easy tuning of various physical-chemical characteristics, such as ionic and electronic conductivity and redox active sites concentration, fundamental for these applications. Moreover, the same structure can exhibit different properties that can synergically act to improve the performance of the material for a specific application.


Corresponding author: Alessandra Sanson, Consiglio Nazionale delle Ricerche – Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza, RA, Italy, e-mail:
Article note: A collection of invited papers based on presentations at the Avogadro Colloquia 2022, 5th edition, that took place on 15–16 December 2022 in Rome, Italy.
  1. Research ethics: Not applicable.

  2. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author states no conflict of interest.

  4. Research funding: The funding under the frame of “Canvas Project” granted by the MASE Ministery of Italy is gratefully acknowledged.

  5. Data availability: Not applicable.

References

[1] M. Zhang. Mater. Today 49, 351 (2021).10.1016/j.mattod.2021.05.004Suche in Google Scholar

[2] J. B. Goodenough. Rep. Prog. Phys. 67, 1915 (2004), https://doi.org/10.1088/0034-4885/67/11/r01.Suche in Google Scholar

[3] A. Moure. Appl. Sci. 8(1), 62 (2018), https://doi.org/10.3390/app8010062.Suche in Google Scholar

[4] H. Zhao, H. Wang, Z. Cheng, Q. Fu, H. Tao, Z. Ma. Ceram. Int. 44, 13226 (2018), https://doi.org/10.1016/j.ceramint.2018.04.148.Suche in Google Scholar

[5] S. Supriya. Coord. Chem. Rev. 479, 215010 (2023), https://doi.org/10.1016/j.ccr.2022.215010.Suche in Google Scholar

[6] X. Liu, L. Xu. Ceram. Int. 43, 12372 (2017).10.1016/j.ceramint.2017.06.103Suche in Google Scholar

[7] T. M. Khader. J. Environ. Chem. Eng. 10, 713 (2022).10.1007/s10098-021-02159-zSuche in Google Scholar

[8] Z. Chen. Appl. Catal., B 199, 241 (2016).10.1016/j.apcatb.2016.06.036Suche in Google Scholar

[9] G. Naresh, T. K. Mandal. ACS Appl. Mater. Interfaces 6, 21000 (2014), https://doi.org/10.1021/am505767c.Suche in Google Scholar PubMed

[10] T. Jardel, A. C. Caballero, M. Villegas. J. Ceram. Soc. Jpn. 116, 511 (2008).10.2109/jcersj2.116.511Suche in Google Scholar

[11] S. Das, S. Swain, R. N. P. Choudhary. J. Solid State Chem. 325, 124121 (2023), https://doi.org/10.1016/j.jssc.2023.124121.Suche in Google Scholar

[12] S. K. Badge, A. V. Deshpande. Sens. Actuators, A 78(2–3), 88 (1999).10.1016/S0924-4247(99)00223-XSuche in Google Scholar

[13] B. H. Park. Nature 401, 682 (1999).10.1038/44352Suche in Google Scholar

[14] E. Mercadelli, N. Sangiorgi, S. Fabbri, A. Sangiorgi, A. Sanson. Sol. Energy Mater. Sol. Cells 267, 112732 (2024), https://doi.org/10.1016/j.solmat.2024.112732.Suche in Google Scholar

[15] A. K. Jena, A. Kulkarni, T. Miyasaka. Chem. Rev. 119, 3036 (2019), https://doi.org/10.1021/acs.chemrev.8b00539.Suche in Google Scholar PubMed

[16] R. Sharif, A. Khalid, S. W. Ahmad, A. Rehman, H. G. Qutab, H. H. Akhtar. Nanoscale Adv. 5, 3803 (2023), https://doi.org/10.1039/d3na00319a.Suche in Google Scholar PubMed PubMed Central

[17] A. Sanson, A. Gondolini. Solid oxide fuel cells. in Materials Science and Materials Engineering, Elsevier (2020).10.1016/B978-0-12-818542-1.00007-2Suche in Google Scholar

[18] P. Berg. J. Fuel Cell Sci. Technol. 5(2), 021007 (2008).10.1115/1.2821599Suche in Google Scholar

[19] S. Hossain, A. M. Abdalla, S. N. B. Jamain, J. H. Zaini, A. K. Azad. Renewable Sustainable Energy Rev. 79, 750 (2017), https://doi.org/10.1016/j.rser.2017.05.147.Suche in Google Scholar

[20] S. Choi, T. C. Davenport, S. M. Haile. Energy Environ. Sci. 12, 206 (2019), https://doi.org/10.1039/c8ee02865f.Suche in Google Scholar

[21] C. Duan. Appl. Phys. Rev. 7, 011314 (2020).Suche in Google Scholar

[22] W. Zając. Open Chem. 11, 471 (2013).10.2478/s11532-012-0144-9Suche in Google Scholar

[23] M. K. Hossain, M. C. Biswas, R. K. Chanda, M. H. K. Rubel, M. I. Khan, K. Hashizume. Emergent Mater. 4, 999 (2021), https://doi.org/10.1007/s42247-021-00230-5.Suche in Google Scholar

[24] A. Gondolini, A. Bartoletti, E. Mercadelli, P. Gramazio, A. Fasolini, F. Basile. J. Membr. Sci. 684, 121865 (2023), https://doi.org/10.1016/j.memsci.2023.121865.Suche in Google Scholar

[25] B. Dai, G. M. Biesold, M. Zhang, H. Zou, Y. Ding, Z. L. Wang. Chem. Soc. Rev. 50, 13646 (2021), https://doi.org/10.1039/d1cs00506e.Suche in Google Scholar PubMed

[26] Y. Hu, Y. Zhang, Y. Chang, R. L. Snyder, Z. L. Wang. ACS Nano 4, 4220 (2010), https://doi.org/10.1021/nn1010045.Suche in Google Scholar PubMed

[27] Z. L. Wang. Adv. Mater. 24, 4632 (2012), https://doi.org/10.1002/adma.201104365.Suche in Google Scholar PubMed

Published Online: 2024-06-27
Published in Print: 2024-07-26

© 2024 IUPAC & De Gruyter

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-1016/html
Button zum nach oben scrollen