Startseite Impact of fluvial discharge on 137Cs in the ocean following the Fukushima Daiichi Nuclear Power Station accident
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Impact of fluvial discharge on 137Cs in the ocean following the Fukushima Daiichi Nuclear Power Station accident

  • Daisuke Tsumune ORCID logo EMAIL logo , Takaki Tsubono , Kazuhiro Misumi , Kazuyuki Sakuma und Yuichi Onda
Veröffentlicht/Copyright: 12. März 2024

Abstract

After the Fukushima Daiichi Nuclear Power Station (F1NPS) accident, 137Cs activity concentrations have not yet decreased to pre-accident levels because of direct release from the site and fluvial discharges of 137Cs deposited on land. It is necessary to consider dispersion processes in the coastal area to understand the impact of multiple river discharges and direct release. To achieve this goal, we carried out oceanic dispersion simulations that considered direct release and fluvial discharges and compared the results with the annual averages of observed data. We assumed that particulate 137Cs discharged from rivers to the ocean quickly resuspended and re-leached after coagulation and precipitation, and that all of the 137Cs was dispersed. The reproducibility of results was improved by considering fluvial discharges of particulate 137Cs at all sites between 2013 and 2016, except near the F1NPS. In other words, particulate 137Cs discharged from rivers was found to influence the results of ocean surface activity concentrations within a relatively short period of time. The impact of direct release was dominant for the observed 137Cs activity concentrations adjacent to the F1NPS, which was used to estimate direct releases.


Corresponding author: Daisuke Tsumune, Center for Research in Radiation, Isotopes, and Earth System Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan; and Central Research Institute of Electric Power Industry, Chiba, 270-1194, Japan, e-mail:
Article note: A collection of invited papers based on the topic of “The global scenario and challenges of radioactive waste in the marine environment” from IUPAC Division VI project #2021-027-2-600.

Acknowledgments

We thank Ryosuke Niwa, Fukiko Taguchi, and Kaori Miyata for their technical help for the simulation. Numerical simulations were performed by the supercomputer system of the Central Research Institute of the Electric Power Institute (HPE SGI 8600).

References

[1] M. Aoyama, D. Tsumune, Y. Inomata, Y. Tateda. J. Environ. Radioact. 217, 106206 (2020), https://doi.org/10.1016/j.jenvrad.2020.106206.Suche in Google Scholar PubMed

[2] M. Aoyama, Y. Inomata. Radionuclides in the Marine Environment: Scientific View on the Fukushima Dai-ichi Nuclear Power Station Accident by 7 Oceanographers, M. Aoyama, Y. Inomata, H. Kaeriyama, Y. Kumamoto, S. Otosaka, Y. Tateda, D. Tsumune (Eds.), pp. 13–56, University of Tsukuba Press, Japan (2023).Suche in Google Scholar

[3] D. Tsumune, T. Tsubono, M. Aoyama, K. Hirose. J. Environ. Radioact. 111, 100 (2012), https://doi.org/10.1016/j.jenvrad.2011.10.007.Suche in Google Scholar PubMed

[4] D. Tsumune, M. Aoyama. Radionuclides in the Marine Environment: Scientific View on the Fukushima Dai-ichi Nuclear Power Station Accident by 7 Oceanographers, M. Aoyama, Y. Inomata, H. Kaeriyama, Y. Kumamoto, S. Otosaka, Y. Tateda, D. Tsumune (Eds.), pp. 279–326, University of Tsukuba Press, Japan (2023).Suche in Google Scholar

[5] J. Kanda. Biogeosciences 10, 6107 (2013), https://doi.org/10.5194/bg-10-6107-2013.Suche in Google Scholar

[6] Nuclear Emergency Response Headquarters. Japanese Government (2011), https://japan.kantei.go.jp/kan/topics/201106/iaea_houkokusho_e.html.Suche in Google Scholar

[7] Y. Sato, T. T. Sekiyama, S. Fang, M. Kajino, A. Quérel, D. Quélo, H. Kondo, H. Terada, M. Kadowaki, M. Takigawa, Y. Morino, J. Uchida, D. Goto, H. Yamazawa. Atmos. Environ.: X 7, 100086 (2020), https://doi.org/10.1016/j.aeaoa.2020.100086.Suche in Google Scholar

[8] D. Tsumune, T. Tsubono, M. Aoyama, M. Uematsu, K. Misumi, Y. Maeda, Y. Yoshida, H. Hayami. Biogeosciences 10, 5601 (2013), https://doi.org/10.5194/bg-10-5601-2013.Suche in Google Scholar

[9] D. Tsumune, T. Tsubono, K. Misumi, Y. Tateda, Y. Toyoda, Y. Onda, M. Aoyama. J. Environ. Radioact. 214, 106173 (2020).10.1016/j.jenvrad.2020.106173Suche in Google Scholar PubMed

[10] K. Taniguchi, Y. Onda, H. G. Smith, W. Blake, K. Yoshimura, Y. Yamashiki, T. Kuramoto, K. Saito. Environ. Sci. Technol. 53, 12339 (2019), https://doi.org/10.1021/acs.est.9b02890.Suche in Google Scholar PubMed

[11] Y. Onda, K. Taniguchi, K. Yoshimura, H. Kato, J. Takahashi, Y. Wakiyama, F. Coppin, H. Smith. Nat. Rev. Earth Environ. 1, 644 (2020), https://doi.org/10.1038/s43017-020-0099-x.Suche in Google Scholar

[12] S. Kakehi, H. Kaeriyama, D. Ambe, T. Ono, S. I. Ito, Y. Shimizu, T. Watanabe. J. Environ. Radioact. 153, 1 (2015), https://doi.org/10.1016/j.jenvrad.2015.11.015.Suche in Google Scholar PubMed

[13] K. Park, M. J. George, Y. Miyake, K. Saruhashi, Y. Katsauragi, T. Kanazawa. Nature 208, 1084 (1965), https://doi.org/10.1038/2081084a0.Suche in Google Scholar

[14] D. Tsumune, M. Aoyama, K. Hirose. J. Geophys. Res. 108, 3262 (2003), https://doi.org/10.1029/2002jc001434.Suche in Google Scholar

[15] N. N. Tereshchenko, N. Y. Mirzoyeva, S. B. Gulin, N. A. Milchakova. Mar. Pollut. Bull. 81, 7 (2014), https://doi.org/10.1016/j.marpolbul.2014.01.003.Suche in Google Scholar PubMed

[16] P. P. Povinec, I. Osvath, M. S. Baxter, S. Ballestra, J. Carroll, J. Gastaud, I. Harms, L. Huynh-Ngoc, L. L. W. Kwong, H. Pettersson. Mar. Pollut. Bull. 35, 235 (1997), https://doi.org/10.1016/s0025-326x(97)00088-x.Suche in Google Scholar

[17] S. Charmasson. Oceanol. Acta 26, 435 (2003), https://doi.org/10.1016/s0399-1784(03)00036-7.Suche in Google Scholar

[18] R. Perianez. J. Environ. Radioact. 77, 301 (2004), https://doi.org/10.1016/j.jenvrad.2004.03.013.Suche in Google Scholar PubMed

[19] Y. Uchiyama, N. Tokunaga, K. Aduma, Y. Kamidaira, D. Tsumune, T. Iwasaki, M. Yamada, Y. Tadeda, T. Ishimaru, Y. Ito, Y. W. Watanabe, K. Ikehara, M. Fukuda, Y. Onda. Sci. Total Environ. 816, 151573 (2021).10.1016/j.scitotenv.2021.151573Suche in Google Scholar PubMed

[20] A. Delaval, C. Duffa, O. Radakovitch. J. Environ. Radioact. 218, 106255 (2020), https://doi.org/10.1016/j.jenvrad.2020.106255.Suche in Google Scholar PubMed

[21] M. Aoyama, H. Kaeriyama, D. Tsumune. Radionuclides in the Marine Environment: Scientific View on the Fukushima Dai-ichi Nuclear Power Station Accident by 7 Oceanographers, M. Aoyama, Y. Inomata, H. Kaeriyama, Y. Kumamoto, S. Otosaka, Y. Tateda, D. Tsumune (Eds.), pp. 153–184, University of Tsukuba Press, Japan (2023).Suche in Google Scholar

[22] H. Takata, T. Aono, M. Aoyama, M. Inoue, H. Kaeriyama, S. Suzuki, T. Tsuruta, T. Wada, Y. Wakiyama. Environ. Sci. Technol. 54, 10678 (2020), https://doi.org/10.1021/acs.est.0c03254.Suche in Google Scholar PubMed

[23] K. Sakuma, T. Nakanishi, K. Yoshimura, H. Kurikami, K. Nanba, M. Zheleznyak. J. Environ. Radioact. 208–209, 106041 (2019), https://doi.org/10.1016/j.jenvrad.2019.106041.Suche in Google Scholar PubMed

[24] A. F. Shchepetkin, J. C. McWilliams. Ocean Model. 9, 347 (2005), https://doi.org/10.1016/j.ocemod.2004.08.002.Suche in Google Scholar

[25] Y. Miyazawa, R. Zhang, X. Guo, H. Tamura, D. Ambe, J.-S. Lee, A. Okuno, H. Yoshinari, T. Setou, K. Komatsu. J. Oceanogr. 65, 737 (2009), https://doi.org/10.1007/s10872-009-0063-3.Suche in Google Scholar

[26] Y. Miyazawa, S. M. Varlamov, T. Miyama, X. Guo, T. Hihara, K. Kiyomatsu, M. Kachi, Y. Kurihara, H. Murakami. Ocean Dynam. 67, 713 (2017), https://doi.org/10.1007/s10236-017-1056-1.Suche in Google Scholar

[27] M. Aoyama. ERAN database (2021), https://doi.org/10.34355/CRiED.U.Tsukuba.00085.Suche in Google Scholar

[28] M. Machida, S. Yamada, A. Iwata, S. Otosaka, T. Kobayashi, M. Watababe, H. Funasaka, T. Morita. J. Nucl. Sci. Technol. 57, 939 (2020), https://doi.org/10.1080/00223131.2020.1740809.Suche in Google Scholar

[29] V. Sanial, K. O. Buesseler, M. A. Charette, S. Nagao. Proc. Natl. Acad. Sci. U. S. A. 114, 11092 (2017), https://doi.org/10.1073/pnas.1708659114.Suche in Google Scholar PubMed PubMed Central

[30(a)] H. Tsuji, T. Nishikiori, S. Ito, H. Ozaki, M. Watanabe, M. Sakai, Y. Ishii, S. Hayashi. Environ. Pollut. 338, 122617 (2023), https://doi.org/10.1016/j.envpol.2023.122617.Suche in Google Scholar PubMed

(b) M. Aoyama, Y. Hamajima, Y. Inomata, E. Oka. Appl. Radiat. Isot. 126, 83 (2017).10.1016/j.apradiso.2016.12.003Suche in Google Scholar PubMed

[31] D. Tsumune, M. Aoyama, K. Hirose, F. O. Bryan, K. Lindsay, G. Danabasoglu. Prog. Oceanogr. 89, 38 (2011), https://doi.org/10.1016/j.pocean.2010.12.006.Suche in Google Scholar

[32] S. Otosaka, M. Aoyama, D. Tsumune. Radionuclides in the Marine Environment: Scientific View on the Fukushima Dai-ichi Nuclear Power Station Accident by 7 Oceanographers, M. Aoyama, Y. Inomata, H. Kaeriyama, Y. Kumamoto, S. Otosaka, Y. Tateda, D. Tsumune (Eds.), pp. 185–218, University of Tsukuba Press, Japan (2023).Suche in Google Scholar

Published Online: 2024-03-12
Published in Print: 2024-07-26

© 2024 IUPAC & De Gruyter

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-0902/html
Button zum nach oben scrollen