Impact of fluvial discharge on 137Cs in the ocean following the Fukushima Daiichi Nuclear Power Station accident
Abstract
After the Fukushima Daiichi Nuclear Power Station (F1NPS) accident, 137Cs activity concentrations have not yet decreased to pre-accident levels because of direct release from the site and fluvial discharges of 137Cs deposited on land. It is necessary to consider dispersion processes in the coastal area to understand the impact of multiple river discharges and direct release. To achieve this goal, we carried out oceanic dispersion simulations that considered direct release and fluvial discharges and compared the results with the annual averages of observed data. We assumed that particulate 137Cs discharged from rivers to the ocean quickly resuspended and re-leached after coagulation and precipitation, and that all of the 137Cs was dispersed. The reproducibility of results was improved by considering fluvial discharges of particulate 137Cs at all sites between 2013 and 2016, except near the F1NPS. In other words, particulate 137Cs discharged from rivers was found to influence the results of ocean surface activity concentrations within a relatively short period of time. The impact of direct release was dominant for the observed 137Cs activity concentrations adjacent to the F1NPS, which was used to estimate direct releases.
Acknowledgments
We thank Ryosuke Niwa, Fukiko Taguchi, and Kaori Miyata for their technical help for the simulation. Numerical simulations were performed by the supercomputer system of the Central Research Institute of the Electric Power Institute (HPE SGI 8600).
References
[1] M. Aoyama, D. Tsumune, Y. Inomata, Y. Tateda. J. Environ. Radioact. 217, 106206 (2020), https://doi.org/10.1016/j.jenvrad.2020.106206.Suche in Google Scholar PubMed
[2] M. Aoyama, Y. Inomata. Radionuclides in the Marine Environment: Scientific View on the Fukushima Dai-ichi Nuclear Power Station Accident by 7 Oceanographers, M. Aoyama, Y. Inomata, H. Kaeriyama, Y. Kumamoto, S. Otosaka, Y. Tateda, D. Tsumune (Eds.), pp. 13–56, University of Tsukuba Press, Japan (2023).Suche in Google Scholar
[3] D. Tsumune, T. Tsubono, M. Aoyama, K. Hirose. J. Environ. Radioact. 111, 100 (2012), https://doi.org/10.1016/j.jenvrad.2011.10.007.Suche in Google Scholar PubMed
[4] D. Tsumune, M. Aoyama. Radionuclides in the Marine Environment: Scientific View on the Fukushima Dai-ichi Nuclear Power Station Accident by 7 Oceanographers, M. Aoyama, Y. Inomata, H. Kaeriyama, Y. Kumamoto, S. Otosaka, Y. Tateda, D. Tsumune (Eds.), pp. 279–326, University of Tsukuba Press, Japan (2023).Suche in Google Scholar
[5] J. Kanda. Biogeosciences 10, 6107 (2013), https://doi.org/10.5194/bg-10-6107-2013.Suche in Google Scholar
[6] Nuclear Emergency Response Headquarters. Japanese Government (2011), https://japan.kantei.go.jp/kan/topics/201106/iaea_houkokusho_e.html.Suche in Google Scholar
[7] Y. Sato, T. T. Sekiyama, S. Fang, M. Kajino, A. Quérel, D. Quélo, H. Kondo, H. Terada, M. Kadowaki, M. Takigawa, Y. Morino, J. Uchida, D. Goto, H. Yamazawa. Atmos. Environ.: X 7, 100086 (2020), https://doi.org/10.1016/j.aeaoa.2020.100086.Suche in Google Scholar
[8] D. Tsumune, T. Tsubono, M. Aoyama, M. Uematsu, K. Misumi, Y. Maeda, Y. Yoshida, H. Hayami. Biogeosciences 10, 5601 (2013), https://doi.org/10.5194/bg-10-5601-2013.Suche in Google Scholar
[9] D. Tsumune, T. Tsubono, K. Misumi, Y. Tateda, Y. Toyoda, Y. Onda, M. Aoyama. J. Environ. Radioact. 214, 106173 (2020).10.1016/j.jenvrad.2020.106173Suche in Google Scholar PubMed
[10] K. Taniguchi, Y. Onda, H. G. Smith, W. Blake, K. Yoshimura, Y. Yamashiki, T. Kuramoto, K. Saito. Environ. Sci. Technol. 53, 12339 (2019), https://doi.org/10.1021/acs.est.9b02890.Suche in Google Scholar PubMed
[11] Y. Onda, K. Taniguchi, K. Yoshimura, H. Kato, J. Takahashi, Y. Wakiyama, F. Coppin, H. Smith. Nat. Rev. Earth Environ. 1, 644 (2020), https://doi.org/10.1038/s43017-020-0099-x.Suche in Google Scholar
[12] S. Kakehi, H. Kaeriyama, D. Ambe, T. Ono, S. I. Ito, Y. Shimizu, T. Watanabe. J. Environ. Radioact. 153, 1 (2015), https://doi.org/10.1016/j.jenvrad.2015.11.015.Suche in Google Scholar PubMed
[13] K. Park, M. J. George, Y. Miyake, K. Saruhashi, Y. Katsauragi, T. Kanazawa. Nature 208, 1084 (1965), https://doi.org/10.1038/2081084a0.Suche in Google Scholar
[14] D. Tsumune, M. Aoyama, K. Hirose. J. Geophys. Res. 108, 3262 (2003), https://doi.org/10.1029/2002jc001434.Suche in Google Scholar
[15] N. N. Tereshchenko, N. Y. Mirzoyeva, S. B. Gulin, N. A. Milchakova. Mar. Pollut. Bull. 81, 7 (2014), https://doi.org/10.1016/j.marpolbul.2014.01.003.Suche in Google Scholar PubMed
[16] P. P. Povinec, I. Osvath, M. S. Baxter, S. Ballestra, J. Carroll, J. Gastaud, I. Harms, L. Huynh-Ngoc, L. L. W. Kwong, H. Pettersson. Mar. Pollut. Bull. 35, 235 (1997), https://doi.org/10.1016/s0025-326x(97)00088-x.Suche in Google Scholar
[17] S. Charmasson. Oceanol. Acta 26, 435 (2003), https://doi.org/10.1016/s0399-1784(03)00036-7.Suche in Google Scholar
[18] R. Perianez. J. Environ. Radioact. 77, 301 (2004), https://doi.org/10.1016/j.jenvrad.2004.03.013.Suche in Google Scholar PubMed
[19] Y. Uchiyama, N. Tokunaga, K. Aduma, Y. Kamidaira, D. Tsumune, T. Iwasaki, M. Yamada, Y. Tadeda, T. Ishimaru, Y. Ito, Y. W. Watanabe, K. Ikehara, M. Fukuda, Y. Onda. Sci. Total Environ. 816, 151573 (2021).10.1016/j.scitotenv.2021.151573Suche in Google Scholar PubMed
[20] A. Delaval, C. Duffa, O. Radakovitch. J. Environ. Radioact. 218, 106255 (2020), https://doi.org/10.1016/j.jenvrad.2020.106255.Suche in Google Scholar PubMed
[21] M. Aoyama, H. Kaeriyama, D. Tsumune. Radionuclides in the Marine Environment: Scientific View on the Fukushima Dai-ichi Nuclear Power Station Accident by 7 Oceanographers, M. Aoyama, Y. Inomata, H. Kaeriyama, Y. Kumamoto, S. Otosaka, Y. Tateda, D. Tsumune (Eds.), pp. 153–184, University of Tsukuba Press, Japan (2023).Suche in Google Scholar
[22] H. Takata, T. Aono, M. Aoyama, M. Inoue, H. Kaeriyama, S. Suzuki, T. Tsuruta, T. Wada, Y. Wakiyama. Environ. Sci. Technol. 54, 10678 (2020), https://doi.org/10.1021/acs.est.0c03254.Suche in Google Scholar PubMed
[23] K. Sakuma, T. Nakanishi, K. Yoshimura, H. Kurikami, K. Nanba, M. Zheleznyak. J. Environ. Radioact. 208–209, 106041 (2019), https://doi.org/10.1016/j.jenvrad.2019.106041.Suche in Google Scholar PubMed
[24] A. F. Shchepetkin, J. C. McWilliams. Ocean Model. 9, 347 (2005), https://doi.org/10.1016/j.ocemod.2004.08.002.Suche in Google Scholar
[25] Y. Miyazawa, R. Zhang, X. Guo, H. Tamura, D. Ambe, J.-S. Lee, A. Okuno, H. Yoshinari, T. Setou, K. Komatsu. J. Oceanogr. 65, 737 (2009), https://doi.org/10.1007/s10872-009-0063-3.Suche in Google Scholar
[26] Y. Miyazawa, S. M. Varlamov, T. Miyama, X. Guo, T. Hihara, K. Kiyomatsu, M. Kachi, Y. Kurihara, H. Murakami. Ocean Dynam. 67, 713 (2017), https://doi.org/10.1007/s10236-017-1056-1.Suche in Google Scholar
[27] M. Aoyama. ERAN database (2021), https://doi.org/10.34355/CRiED.U.Tsukuba.00085.Suche in Google Scholar
[28] M. Machida, S. Yamada, A. Iwata, S. Otosaka, T. Kobayashi, M. Watababe, H. Funasaka, T. Morita. J. Nucl. Sci. Technol. 57, 939 (2020), https://doi.org/10.1080/00223131.2020.1740809.Suche in Google Scholar
[29] V. Sanial, K. O. Buesseler, M. A. Charette, S. Nagao. Proc. Natl. Acad. Sci. U. S. A. 114, 11092 (2017), https://doi.org/10.1073/pnas.1708659114.Suche in Google Scholar PubMed PubMed Central
[30(a)] H. Tsuji, T. Nishikiori, S. Ito, H. Ozaki, M. Watanabe, M. Sakai, Y. Ishii, S. Hayashi. Environ. Pollut. 338, 122617 (2023), https://doi.org/10.1016/j.envpol.2023.122617.Suche in Google Scholar PubMed
(b) M. Aoyama, Y. Hamajima, Y. Inomata, E. Oka. Appl. Radiat. Isot. 126, 83 (2017).10.1016/j.apradiso.2016.12.003Suche in Google Scholar PubMed
[31] D. Tsumune, M. Aoyama, K. Hirose, F. O. Bryan, K. Lindsay, G. Danabasoglu. Prog. Oceanogr. 89, 38 (2011), https://doi.org/10.1016/j.pocean.2010.12.006.Suche in Google Scholar
[32] S. Otosaka, M. Aoyama, D. Tsumune. Radionuclides in the Marine Environment: Scientific View on the Fukushima Dai-ichi Nuclear Power Station Accident by 7 Oceanographers, M. Aoyama, Y. Inomata, H. Kaeriyama, Y. Kumamoto, S. Otosaka, Y. Tateda, D. Tsumune (Eds.), pp. 185–218, University of Tsukuba Press, Japan (2023).Suche in Google Scholar
© 2024 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- Editorial
- The Global Scenario and Challenges of Radioactive Waste in the Marine Environment
- Special topic papers
- A critical review of the quantification, analysis and detection of radionuclides in the environment using diffusive gradients in thin films (DGT): advances and perspectives
- Overview of marine radionuclides from sampling to monitoring
- Radionuclides in marine sediment
- Speciation and mobility of uranium isotopes in the Shu River: impacts for river to sea transfer
- Impact of fluvial discharge on 137Cs in the ocean following the Fukushima Daiichi Nuclear Power Station accident
- Transport of radioactive materials from terrestrial to marine environments in Fukushima over the past decade
- The transfer of irradiated uranium from the Irish Sea coast to the terrestrial environment in Cumbria, UK
- Public knowledge, sentiments, and perceptions of low dose radiation (LDR) and power production, with special reference to reactor accidents
- An exercise-based international polymer syllabus
- Conference paper
- Perovskite: a key structure for a sustainable hydrogen economy
Artikel in diesem Heft
- Frontmatter
- Editorial
- The Global Scenario and Challenges of Radioactive Waste in the Marine Environment
- Special topic papers
- A critical review of the quantification, analysis and detection of radionuclides in the environment using diffusive gradients in thin films (DGT): advances and perspectives
- Overview of marine radionuclides from sampling to monitoring
- Radionuclides in marine sediment
- Speciation and mobility of uranium isotopes in the Shu River: impacts for river to sea transfer
- Impact of fluvial discharge on 137Cs in the ocean following the Fukushima Daiichi Nuclear Power Station accident
- Transport of radioactive materials from terrestrial to marine environments in Fukushima over the past decade
- The transfer of irradiated uranium from the Irish Sea coast to the terrestrial environment in Cumbria, UK
- Public knowledge, sentiments, and perceptions of low dose radiation (LDR) and power production, with special reference to reactor accidents
- An exercise-based international polymer syllabus
- Conference paper
- Perovskite: a key structure for a sustainable hydrogen economy