Startseite Plasmon-enhanced photodetection in nanostructures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Plasmon-enhanced photodetection in nanostructures

  • Yanjun Bao und Zheyu Fang EMAIL logo
Veröffentlicht/Copyright: 23. Juli 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Photodetection, which converts light into electric current, has significant importance in modern physics. For the graphene photodetector, the performance is mainly limited by its low external quantum efficiency, mainly due to its poor light absorption properties. While for the semiconductor photodetector, photocurrent generation is limited to photon energies above the band gap of the semiconductor. When a metallic nanostructure is introduced, on the one hand, the plasmon oscillations lead to a dramatic enhancement of the local electric field around graphene, resulting in a significant performance improvement of the graphene photodetector; on the other hand, hot electrons from plasmon decay can transfer across the Schottky barrier at the metal-semiconductor interface, resulting in a photocurrent, which is no longer limited to photon energies greater than the band gap of the semiconductor, but rather to photon energies above the Schottky barrier height. Here, we review typical plasmonic nanostructures for the enhancement of photodetection in graphene and other semiconductor materials.


Corresponding author: Zheyu Fang, School of Physics, State Key Lab for Mesoscopic Physics, Peking University, Beijing 100871, China; and Collaborative Innovation Center of Quantum Matter, Beijing 100871, China, e-mail:

Acknowledgments

This work is supported by National Science Foundation of China (Grant nos. 61422501 and 11374023), the National Basic Research Program of China (973 Program, Grant no. 2015CB932403), and Beijing Natural Science Foundation (Grant no. L140007), The Author of National Excellent Doctoral Dissertation of PR China, (Grant/Award Number: ‘201420’).

References

[1] Oneil M, Marohn J, Mclendon G. Dynamics of electron-hole pair recombination in semiconductor clusters. J. Phys. Chem. 1990, 94, 4356–4363.Suche in Google Scholar

[2] Rohlfing M, Louie SG. Electron-hole excitations in semiconductors and insulators. Phys. Rev. Lett. 1998, 81, 2312–2315.Suche in Google Scholar

[3] Chen JH, Jang C, Xiao SD, Ishigami M, Fuhrer MS. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209.Suche in Google Scholar

[4] Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308–1308.Suche in Google Scholar

[5] Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.Suche in Google Scholar

[6] Sun ZP, Hasan T, Torrisi F, Popa D, Privitera G, Wang FQ, Bonaccorso F, Basko DM, Ferrari AC. Graphene mode-locked ultrafast laser. Acs Nano 2010, 4, 803–810.Suche in Google Scholar

[7] Shi SF, Xu XD, Ralph DC, McEuen PL. Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors. Nano Lett. 2011, 11, 1814–1818.Suche in Google Scholar

[8] Wang X, Zhi LJ, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.Suche in Google Scholar

[9] Liu M, Yin XB, Ulin-Avila E, Geng BS, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67.Suche in Google Scholar

[10] Ju L, Geng BS, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang XG, Zettl A, Shen YR, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630–634.Suche in Google Scholar

[11] Bao QL, Zhang H, Wang B, Ni ZH, Lim CHYX, Wang Y, Tang DY, Loh KP. Broadband graphene polarizer. Nat. Photonics 2011, 5, 411–415.Suche in Google Scholar

[12] Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.Suche in Google Scholar

[13] Fang Z, Wang Y, Schlather AE, Liu Z, Ajayan PM, de Abajo FJ, Nordlander P, Zhu X, Halas NJ. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 2014, 14, 299–304.Suche in Google Scholar

[14] Fang ZY, Thongrattanasiri S, Schlather A, Liu Z, Ma LL, Wang YM, Ajayan PM, Nordlander P, Halas NJ, de Abajo FJG. Gated tunability and hybridization of localized plasmons in nanostructured graphene. Acs Nano 2013, 7, 2388–2395.Suche in Google Scholar

[15] Mueller T, Xia FNA, Avouris P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301.Suche in Google Scholar

[16] Xia FN, Mueller T, Golizadeh-Mojarad R, Freitag M, Lin YM, Tsang J, Perebeinos V, Avouris P. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 2009, 9, 1039–1044.Suche in Google Scholar

[17] Mak KF, Sfeir MY, Wu Y, Lui CH, Misewich JA, Heinz TF. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 2008, 101, 196405.Suche in Google Scholar

[18] Ueno K, Misawa H. Plasmon-enhanced photocurrent generation and water oxidation from visible to near-infrared wavelengths. NPG Asia Mater 2013, 5, e61.Suche in Google Scholar

[19] Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y, Duan X. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579.Suche in Google Scholar

[20] Sonnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 2002, 88, 077402.Suche in Google Scholar

[21] Endriz JG, Spicer WE. Surface-plasmon-one-electron decay and its observation in photoemission. Phys. Rev. Lett. 1970, 24, 64.Suche in Google Scholar

[22] Lehmann J, Merschdorf M, Pfeiffer W, Thon A, Voll S, Gerber G. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys. Rev. Lett. 2000, 85, 2921–2924.Suche in Google Scholar

[23] Chalabi H, Schoen D, Brongersma ML. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 2014, 14, 1374–1380.Suche in Google Scholar

[24] Fang Z, Liu Z, Wang Y, Ajayan PM, Nordlander P, Halas NJ. Graphene-antenna sandwich photodetector. Nano Lett. 2012, 12, 3808–3813.Suche in Google Scholar

[25] Knight MW, Wang Y, Urban AS, Sobhani A, Zheng BY, Nordlander P, Halas NJ. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 2013, 13, 1687–1692.Suche in Google Scholar

[26] Lee YK, Jung CH, Park J, Seo H, Somorjai GA, Park JY. Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. Nano Lett. 2011, 11, 4251–4255.Suche in Google Scholar

[27] Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 2014, 14, 3510–3514.Suche in Google Scholar

[28] Mubeen S, Hernandez-Sosa G, Moses D, Lee J, Moskovits M. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett. 2011, 11, 5548–5552.Suche in Google Scholar

[29] Senanayake P, Hung CH, Shapiro J, Lin A, Liang B, Williams B. S, Huffaker DL. Surface plasmon-enhanced nanopillar photodetectors. Nano Lett. 2011, 11, 5279–5283.Suche in Google Scholar

[30] Lin KT, Chen HL, Lai YS, Yu CC. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths. Nat. Commun. 2014, 5, 3288.Suche in Google Scholar

[31] Sobhani A, Knight MW, Wang Y, Zheng B, King NS, Brown LV, Fang Z, Nordlander P, Halas NJ. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 2013, 4, 1643.Suche in Google Scholar

[32] Konstantatos G, Sargent EH. Nanostructured materials for photon detection. Nat. Nanotechnol. 2010, 5, 391–400.Suche in Google Scholar

[33] Knight MW, Sobhani H, Nordlander P, Halas NJ. Photodetection with active optical antennas. Science 2011, 332, 702–704.Suche in Google Scholar

[34] McFarland EW, Tang J. A photovoltaic device structure based on internal electron emission. Nature 2003, 421, 616–618.Suche in Google Scholar

[35] Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103.Suche in Google Scholar

[36] Echtermeyer TJ, Britnell L, Jasnos PK, Lombardo A, Gorbachev RV, Grigorenko AN, Geim AK, Ferrari AC, Novoselov KS. Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2011, 2, 458.Suche in Google Scholar

[37] Mubeen S, Lee J, Singh N, Kramer S, Stucky GD, Moskovits M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 2013, 8, 247–251.Suche in Google Scholar

[38] Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247.Suche in Google Scholar

[39] Kang Y, Najmaei S, Liu Z, Bao Y, Wang Y, Zhu X, Halas NJ, Nordlander P, Ajayan PM, Lou J, Fang Z. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 2014, 26, 6467–6471.Suche in Google Scholar

[40] Sun ZH, Chang HX. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. Acs Nano 2014, 8, 4133–4156.Suche in Google Scholar

[41] Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715.Suche in Google Scholar

[42] Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ. Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett. 2010, 10, 3184–3189.Suche in Google Scholar

[43] Ye J, Wen F, Sobhani H, Lassiter JB, Van Dorpe P, Nordlander P, Halas NJ. Plasmonic nanoclusters: near field properties of the fano resonance interrogated with SERS. Nano Lett. 2012, 12, 1660–1667.Suche in Google Scholar

[44] Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N. Plasmonic oligomers: the role of individual particles in collective behavior. Acs Nano 2011, 5, 2042–2050.Suche in Google Scholar

[45] Wang Y, Li Z, Zhao K, Sobhani A, Zhu X, Fang Z, Halas NJ. Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters. Nanoscale 2013, 5, 9897–9901.Suche in Google Scholar

[46] Fang ZY, Lin CF, Ma RM, Huang S, Zhu X. Planar plasmonic focusing and optical transport using CdS nanoribbon. Acs Nano 2010, 4, 75–82.Suche in Google Scholar

[47] Fang Z, Cai J, Yan Z, Nordlander P, Halas NJ, Zhu X. Removing a wedge from a metallic nanodisk reveals a fano resonance. Nano Lett. 2011, 11, 4475–4479.Suche in Google Scholar

[48] Fang Z, Peng Q, Song W, Hao F, Wang J, Nordlander P, Zhu X. Plasmonic focusing in symmetry broken nanocorrals. Nano Lett. 2011, 11, 893–897.Suche in Google Scholar

[49] Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP. Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 2000, 104, 10549–10556.Suche in Google Scholar

[50] Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.Suche in Google Scholar

[51] Chen HJ, Shao L, Li Q, Wang JF. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.Suche in Google Scholar

[52] Fang Z, Zhen YR, Neumann O, Polman A, Garcia de Abajo FJ, Nordlander P, Halas NJ. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett. 2013, 13, 1736–1742.Suche in Google Scholar

[53] Fang ZY, Lu YW, Fan LR, Lin CF, Zhu X. Surface plasmon polariton enhancement in silver nanowire–nanoantenna structure. Plasmonics 2010, 5, 57–62.Suche in Google Scholar

[54] Fang Z, Fan L, Lin C, Zhang D, Meixner AJ, Zhu X. Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett. 2011, 11, 1676–1680.Suche in Google Scholar

[55] Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.Suche in Google Scholar

[56] Fowler RH. The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys. Rev. 1931, 38, 45–56.Suche in Google Scholar

[57] Kreibig U, Vollmer M. Optical Properties of Metal Clusters. Springer: New York, 1995.Suche in Google Scholar

[58] Cowley AM. Titanium-silicon Schottky barrier diodes. Sol. State Electron. 1970, 13, 403–414.Suche in Google Scholar

[59] Wang LP, Zhang ZM. Resonance transmission or absorption in deep gratings explained by magnetic polaritons. Appl. Phys. Lett. 2009, 95, 111904.Suche in Google Scholar

[60] White JS, Veronis G, Yu ZF, Barnard ES, Chandran A, Fan SH, Brongersma ML. Extraordinary optical absorption through subwavelength slits. Opt. Lett. 2009, 34, 686–688.Suche in Google Scholar

[61] Genet C, Ebbesen TW. Light in tiny holes. Nature 2007, 445, 39–46.Suche in Google Scholar

[62] Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L. Light passing through subwavelength apertures. Rev. Mod. Phys. 2010, 82, 729–787.Suche in Google Scholar

[63] Akbari A, Tait RN, Berini P. Surface plasmon waveguide Schottky detector. Opt. Express 2010, 18, 8505–8514.Suche in Google Scholar

[64] Nishijima Y, Ueno K, Yokota Y, Murakoshi K, Misawa H. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett. 2010, 1, 2031–2036.Suche in Google Scholar

[65] Grover S, Moddel G. Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J. Photovoltaics 2011, 1, 78–83.Suche in Google Scholar

[66] Twu BL, Schwarz SE. Mechanism and properties of point-contact metal-insulator-metal diode detectors at 10.6 μ. Appl. Phys. Lett. 1974, 25, 595–598.Suche in Google Scholar

[67] Wang F, Melosh NA. Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices. Nat. Commun. 2013, 4, 1711.Suche in Google Scholar

[68] Heiblum M, Wang S, Whinnery JR, Gustafson TK. Characteristics of integrated MOM junctions at DC and at optical frequencies. IEEE J. Quant. Electron. 1978, 14, 159–169.Suche in Google Scholar

[69] Faris SM, Gustafso TK, Wiesner JC. Detection of optical and infrared radiation with DC-biased electron-tunneling metal-barrier-metal diodes. IEEE J. Quant. Electron. 1973, 9, 737–745.Suche in Google Scholar

[70] Gaylord TK, Brennan KF. Electron wave optics in semiconductors. J. Appl. Phys. 1989, 65, 814–820.Suche in Google Scholar

[71] Ventrice CA, Labella VP, Ramaswamy G, Yu HP, Schowalter LJ. Measurement of hot-electron scattering processes at Au/Si(100) Schottky interfaces by temperature-dependent ballistic-electron-emission microscopy. Phys. Rev. B 1996, 53, 3952–3959.Suche in Google Scholar

[72] Crowell CR, Sze SM. Ballistic mean free path measurements of hot electrons in Au films. Phys. Rev. Lett. 1965, 15, 659.Suche in Google Scholar

[73] Ye YQ, Jin Y, He SL. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J. Opt. Soc. Am. B 2010, 27, 498–504.Suche in Google Scholar

[74] Teperik TV, García de Abajo FJ, Borisov AG, Abdelsalam M, Bartlett PN, Sugawara Y, Baumberg JJ. Omnidirectional absorption in nanostructured metal surfaces. Nat. Photonics 2008, 2, 299–301.Suche in Google Scholar

[75] Bouchon P, Koechlin C, Pardo F, Haidar R, Pelouard JL. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Opt. Lett. 2012, 37, 1038–1040.Suche in Google Scholar

[76] Grant J, Ma Y, Saha S, Khalid A, Cumming DRS. Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 2011, 36, 3476–3478.Suche in Google Scholar

[77] Akbari A, Berini P. Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl. Phys. Lett. 2009, 95, 021104.Suche in Google Scholar

[78] Soref RA. Silicon-based optoelectronics. Proceed. IEEE 1993, 81, 1687–1706.Suche in Google Scholar

[79] Goykhman I, Desiatov B, Khurgin J, Shappir J, Levy U. Locally oxidized silicon surface-plasmon schottky detector for telecom regime. Nano Lett. 2011, 11, 2219–2224.Suche in Google Scholar

[80] Goykhman I, Desiatov B, Khurgin J, Shappir J, Levy, U. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express 2012, 20, 28594–28602.Suche in Google Scholar

[81] Bradley JDB, Jessop PE, Knights AP. Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm. Appl. Phys. Lett. 2005, 86, 241103.Suche in Google Scholar

[82] Zhu SY, Chu HS, Lo GQ, Bai P, Kwong DL. Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction. Appl. Phys. Lett. 2012, 100, 061109.Suche in Google Scholar

[83] Zhu SY, Yu MB, Lo GQ, Kwong DL. Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications. Appl. Phys. Lett. 2008, 92, 081103.Suche in Google Scholar

[84] Shalaev VM, Douketis C, Stuckless JT, Moskovits M. Light-induced kinetic effects in solids. Phys. Rev. B 1996, 53, 11388–11402.Suche in Google Scholar

[85] Yin ZY, Li H, Li H, Jiang L, Shi YM, Sun YH, Lu G, Zhang Q, Chen XD, Zhang H. Single-layer MoS2 phototransistors. Acs Nano 2012, 6, 74–80.Suche in Google Scholar

[86] Buscema M, Barkelid M, Zwiller V, van der Zant HSJ, Steele GA, Castellanos-Gomez A. Large and tunable photothermoelectric effect in single-layer MoS2.Nano Lett. 2013, 13, 358–363.Suche in Google Scholar

[87] Roy K, Padmanabhan M, Goswami S, Sai TP, Ramalingam G, Raghavan S, Ghosh A. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.Suche in Google Scholar

[88] Park Y, Choong V, Gao Y, Hsieh BR, Tang CW. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 1996, 68, 2699–2701.Suche in Google Scholar

[89] Wang WY, Feng QY, Jiang KM, Huang JH, Zhang XP, Song WJ, Tan RQ. Dependence of aluminum-doped zinc oxide work function on surface cleaning method as studied by ultraviolet and X-ray photoelectron spectroscopies. Appl. Surf. Sci. 2011, 257, 3884–3887.Suche in Google Scholar

Received: 2014-12-10
Accepted: 2015-5-8
Published Online: 2015-7-23
Published in Print: 2015-8-1

©2015 by De Gruyter

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ntrev-2014-0050/html
Button zum nach oben scrollen