Startseite Variations in carbohydrates molar mass distribution during chemical degradation and consequences on fibre strength
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Variations in carbohydrates molar mass distribution during chemical degradation and consequences on fibre strength

  • Etienne Montet ORCID logo EMAIL logo , Dominique Lachenal und Christine Chirat
Veröffentlicht/Copyright: 28. Januar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Industrial oxygen-delignified and fully-bleached hardwood kraft pulps were treated with chemicals to provoke carbohydrates depolymerisation: ozone, hypochlorous acid, and cellulase. The degrees of polymerisation (DP) of cellulose obtained by pulp viscosity measurement in Cuen and by size-exclusion chromatography after direct dissolution in DMAc/LiCl indicated the extent of the chemical degradation inflicted to the fibres. Molar mass distributions (MMD) described the carbohydrates depolymerisation patterns. Fibre strength was assessed by measuring the zero-span tensile index at never-dried state. Fibre strength deterioration seemed to be mainly driven by the topochemistry of the cellulose degradation (homogeneous or localised), rather than by its intensity usually measured as an average DP loss. In fact, depolymerisation by cellulase was found critically detrimental to fibres strength whereas ozone and hypochlorous acid induced little harm to the fibres despite a significant cellulose depolymerisation. According to these results, in line with several past studies, fibre strength measurements should be performed systematically as the sole pulp viscosity is an inadequate indicator. Alternatively, albeit being insufficient strength predictors on their own MMD can give valuable insight on the topochemistry of the cellulose degradation, a key aspect when monitoring fibre strength preservation during pulping and bleaching.


Corresponding author: Etienne Montet, Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LGP2, 38000 Grenoble, France; The French Agency for Ecological Transition (ADEME), 20, Avenue du Grésillé, BP 90406, 49004 Angers Cedex 01, France; and Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France, E-mail:

Funding source: Fibre Excellence

Award Identifier / Grant number: Appels à projets Thèses

Funding source: Xylem Inc.

Acknowledgments

We would like to thank Dr. Anne-Laurence Dupont (CRC, Paris) for her help with developing the direct dissolution of cellulose in DMAc/LiCl.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. All the research work and interpretations were done in Univ. Grenoble Alpes, LGP2, Grenoble. The article was written in UniLaSalle, Beauvais.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This study was supported by the French Agency for Ecological Transition, Xylem Inc., and Fibre Excellence.

  7. Data availability: Not applicable.

References

Adusumalli, R.B., Passas, R., Krishnamurthy, S., Krishnamurthy, B., Kombaiah, B., and Montagne, A. (2014). Nanoindentation of bleached and refined pulp fibres. Int. J. Mater. Eng. Innovat. 5: 138–150.10.1504/IJMATEI.2014.060320Suche in Google Scholar

Bennington, C.P.J., Zhang, X.Z., and van Heiningen, A.R.P. (1999). Effect of fibre-width distribution on ozone bleaching. J. Pulp Pap. Sci. 25: 124–129.Suche in Google Scholar

Berggren, R., Berthold, F., Sjöholm, E., and Lindström, M. (2001). Fiber strength in relation to molecular mass distribution of hardwood kraft pulp. Nord. Pulp Pap. Res. J. 16: 333–338, https://doi.org/10.3183/npprj-2001-16-04-p333-338.Suche in Google Scholar

Berggren, R., Molin, U., Berthold, F., Lennholm, H., and Lindström, M. (2003). Alkaline degradation of birch and spruce: influence of degradation conditions on molecular mass distributions and fibre strength. Carbohydr. Polym. 51: 255–264, https://doi.org/10.1016/S0144-8617(02)00160-1.Suche in Google Scholar

Bragatto, J., Segato, F., Cota, J., Mello, D.B., Oliveira, M.M., Buckeridge, M.S., Squina, F.M., and Driemeier, C. (2012). Insights on how the activity of an endoglucanase is affected by physical properties of insoluble celluloses. J. Phys. Chem. B 116: 6128–6136, https://doi.org/10.1021/jp3021744.Suche in Google Scholar PubMed

Brogdon, B.N. and Lucia, L.A. (2023). Kraft pulp viscosity as a predictor of paper strength: its uses and abuses. Tappi J. 22: 631–643, https://doi.org/10.32964/tj22.10.631.Suche in Google Scholar

Byrd, M.V.Jr., Gratzl, J.S., and Singh, R.P. (1992). Delignification and bleaching of chemical with ozone: a literature review. Tappi J. 75: 207–213.Suche in Google Scholar

Cheng, G., Liu, Z., Murton, J.K., Jablin, M., Dubey, M., Majewski, J., Halbert, C., Browning, J., Ankner, J., Akgun, B., et al.. (2011). Neutron reflectometry and QCM-D study of the interaction of cellulases with films of amorphous cellulose. Biomacromolecules 12: 2216–2224, https://doi.org/10.1021/bm200305u.Suche in Google Scholar PubMed

Dupont, A.L. (2003). Cellulose in lithium chloride/N,N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer 44: 4117–4126, https://doi.org/10.1016/S0032-3861(03)00398-7.Suche in Google Scholar

Emsley, A.M., Ali, M., and Heywood, R.J. (2000). A size exclusion chromatography study of cellulose degradation. Polymer 41: 8513–8521, https://doi.org/10.1016/s0032-3861(00)00243-3.Suche in Google Scholar

Engström, A.C., Ek, M., and Henriksson, G. (2006). Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent edoglucanase. Biomacromolecules 7: 2027–2031, https://doi.org/10.1021/bm0509725.Suche in Google Scholar PubMed

Godsay, M.P. and Pearce, E.M. (1984). Physico-chemical properties of ozone oxidized kraft pulps. Tappi Oxyg. Delignification Symp. Notes: 55–70.Suche in Google Scholar

Guita, M., Chiantore, O., and Ludo, M.-P. (1990). Monte-Carlo simulations of polymer degradations. 1. Degradations without volatilisation. Macromolecules 23: 2087–2092, https://doi.org/10.1021/ma00209a035.Suche in Google Scholar

Gurnagul, N., Page, D., and Paice, M. (1992). The effect of cellulose degradation on the strength of wood pulp fibres. Nord. Pulp Pap. Res. J. 3: 152–154, https://doi.org/10.3183/NPPRJ-1992-07-03-p152-154.Suche in Google Scholar

Hartler, N., Chemistry, P., and Royal, T. (1995). Aspects on curled and microcompressed fibers. Nord. Pulp Pap. Res. J. 10: 4–7, https://doi.org/10.3183/npprj-1995-10-01-p004-007.Suche in Google Scholar

Henniges, U., Potthast, A., Jeong, M.-J., Rosenau, T., Vejdovszky, P., and Siller, M. (2014). Finally dissolved! Activation procedures to dissolve cellulose in DMAc/LiCl prior to size exclusion chromatography analysis – a review. Current Chromatogr. 1: 52–68, https://doi.org/10.2174/2213240601666131118220030.Suche in Google Scholar

Hildén, L., Väljamäe, P., and Johansson, G. (2005). Surface character of pulp fibres studied using endoglucanases. J. Biotechnol. 118: 386–397, https://doi.org/10.1016/j.jbiotec.2005.05.001.Suche in Google Scholar PubMed

Hopgood, J.R., Connelly, M., McHoull, B., and Troy, D. (2019). Multi-snapshot imaging for chromatographic peak analysis. IEEE Trans. Biomed. Eng. 66: 119–129, https://doi.org/10.1109/TBME.2018.2826144.Suche in Google Scholar PubMed

Iribarne, J. and Schroeder, L.R. (1997). High-pressure oxygen delignification of kraft pulps. Tappi J. 80: 241–250.Suche in Google Scholar

Jackson, J.S., Heitmann, J.A., and Joyce, T.W. (1993). Enzymatic modifications of secondary fiber. Tappi J. 76: 147–154.Suche in Google Scholar

Johansson, E.E. and Lind, J. (2005). Free radical mediated cellulose degradation during high consistency ozonation. J. Wood Chem. Technol. 25: 171–186, https://doi.org/10.1080/02773810500191773.Suche in Google Scholar

Kang, G.J., Ni, Y., and van Heiningen, A.R.P. (2001). Further understanding on the cause of cellulose degradation during ozone bleaching. IPPTA: Quarterly J. Indian Pulp Paper Tech. Assoc. 13: 1–5.Suche in Google Scholar

McCormick, C.L., Callais, P.A., and Hutchinson, B.H. (1985). Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules 18: 2394–2401, https://doi.org/10.1021/ma00154a010.Suche in Google Scholar

Mischnick, P., Voiges, K., Cuers-Dammann, J., Unterieser, I., Sudwischer, P., Wubben, A., and Hashemi, P. (2021). Analysis of the heterogeneities of first and second order of cellulose derivatives: a complex challenge. Polysaccharides 2: 843–865, https://doi.org/10.3390/polysaccharides2040051.Suche in Google Scholar

Mohlin, U.-B. and Alfredson, C. (1990). Fiber deformation and its implications in pulp characterization. Nord. Pulp Pap. Res. J. 5: 172–179.10.3183/npprj-1990-05-04-p172-179Suche in Google Scholar

Mohlin, U.-B., Dahlbom, J., and Hornatowska, J. (1996). Fiber deformation and sheet strength. Tappi J. 79: 106–111.Suche in Google Scholar

Molin, U. and Teder, A. (2002). Importance of cellulose/hemicellulose-ratio for pulp strength. Nord. Pulp Pap. Res. J. 17: 14–19a, https://doi.org/10.3183/npprj-2002-17-01-p014-019.Suche in Google Scholar

Oglesby, R.J., Moynihan, H.J., Santos, R.B., and Hart, P.W. (2016). Does kraft hardwood and softwood pulp viscosity correlate to paper properties? Tappi J. 15: 643–651, https://doi.org/10.32964/tj15.10.643.Suche in Google Scholar

Oksanen, T., Buchert, J., and Viikari, L. (1997). The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung 51: 355–360, https://doi.org/10.1515/hfsg.1997.51.4.355.Suche in Google Scholar

Page, D.H., Seth, R.S., and El-Hosseiny, F. (1985). Strength and chemical composition of wood pulp fibres. Trans. Eight Fund. Res. Symp.: 77.10.15376/frc.1985.1.77Suche in Google Scholar

Palme, A., Theliander, H., and Brelid, H. (2016). Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose. Carbohydr. Polym. 136: 1281–1287, https://doi.org/10.1016/j.carbpol.2015.10.015.Suche in Google Scholar PubMed

Passas, R., Voillot, C., Tarrajat, G., Caucal, G., Khelifi, B., and Tourtollet, G.E.P. (2001). Morfi as a novel technology for morphological analysis of fibers. Récents Progrès En Génie Des Procédés 15: 259–264.Suche in Google Scholar

Pedrola, J., Roncero, M.B., Colom, J.F., Vidal, T., and Torres, A.L. (2004). Application of an experimental design to modelling the hydrogen peroxide stage in TCF bleaching of eucalypt pulp. Appita: Technol. Innov. Manuf. Environ. 57: 141–145.Suche in Google Scholar

Rennel, J. (1995). TCF - an example of the growing importance of environmental perceptions in the choice of fibres. Nord. Pulp Pap. Res. J. 10: 24–32, https://doi.org/10.3183/npprj-1995-10-01-p024-032.Suche in Google Scholar

Sihtola, H., Kyrklund, B., Laamanen, L., and Palenius, I. (1963). Comparison and conversion of viscosity and DP-values determined by different methods. Paperi. Ja. Puu. 45: 225–232.Suche in Google Scholar

Sjöholm, E., Gustafsson, K., Norman, E., Reitberger, T., and Colmsjö, A. (2000). Fibre strength in relation to molecular weight distribution of hardwood kraft pulp. Degradation by gamma irradiation, oxygen/alkali or alkali. Nord. Pulp Pap. Res. J. 15: 326–332, https://doi.org/10.3183/npprj-2000-15-04-p326-332.Suche in Google Scholar

Sjöström, J. and Brolin, A. (1996). Bleached pulp composition and its determination. In: Dence, C.W. and Reeve, D.W. (Eds.). Pulp bleaching, principles and practice, section 7: The properties of bleached pulp, chapter 1. TAPPI Press, Atlanta, pp. 677–693.Suche in Google Scholar

Stefanovic, B., Pirker, K.F., Rosenau, T., and Potthast, A. (2014). Effects of tribochemical treatments on the integrity of cellulose. Carbohydr. Polym. 111: 688–699, https://doi.org/10.1016/j.carbpol.2014.05.011.Suche in Google Scholar PubMed

Suurnäkki, A., Tenkanen, M., Siika-Aho, M., Niku-Paavola, M.L., Viikari, L., and Buchert, J. (2000). Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp. Cellulose 7: 189–209, https://doi.org/10.1023/A:1009280109519.Suche in Google Scholar

Terbojevich, M., Cosani, A., Camilot, M., and Focher, B. (1995). Solution studies of cellulose tricarbanilates obtained in homogeneous phase. J. Appl. Polym. Sci. 55: 1663–1671, https://doi.org/10.1002/app.1995.070551206.Suche in Google Scholar

Tran, A.V. (2006). High-consistency ozonation of hardwood kraft pulp. Holzforschung 60: 685–690, https://doi.org/10.1515/HF.2006.115.Suche in Google Scholar

Vizárová, K., Kirschnerová, S., Kačík, F., Briškárová, A., Šutý, Š., and Katuščák, S. (2012). Relationship between the decrease of degree of polymerisation of cellulose and the loss of groundwood pulp paper mechanical properties during accelerated ageing. Chem. Pap. 66: 1124–1129, https://doi.org/10.2478/s11696-012-0236-1.Suche in Google Scholar

Wathén, R. (2006). Studies on fiber strength and its effect on paper properties, Ph.D. thesis, Aalto University. Available at: https://aaltodoc.aalto.fi/items/e23ab9c3-c4ef-4d3d-b93d-be001d3fda98Suche in Google Scholar

Weißpflog, J., Vehlow, D., Müller, M., Kohn, B., Scheler, U., Boye, S., and Schwarz, S. (2021). Characterization of chitosan with different degree of deacetylation and equal viscosity in dissolved and solid state – insights by various complimentary methods. Int. J. Biol. Macromol. 171: 242–261, https://doi.org/10.1016/j.ijbiomac.2021.01.010.Suche in Google Scholar PubMed

Zhou, Z., Jääskeläinen, A.S., and Vuorinen, T. (2008). Oxidation of cellulose and carboxylic acids by hypochlorous acid: kinetics and mechanisms. J. Pulp Pap. Sci. 34: 212–218.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/npprj-2024-0082).


Received: 2024-11-15
Accepted: 2025-01-09
Published Online: 2025-01-28
Published in Print: 2025-03-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Biorefining
  3. Fractionation methods of eucalyptus kraft lignin for application in biorefinery
  4. Pulp and paper industry side-stream materials as feed for the oleaginous yeast species Lipomyces starkeyi and Rhodotorula toruloides
  5. Chemical Pulping
  6. Comparing classic time series models and state-of-the-art time series neural networks for forecasting as-fired liquor properties
  7. Optimization of kraft pulping process for Sesbania aculeata (dhaincha) stems using RSM
  8. On the nature of the selectivity of oxygen delignification
  9. Unlocking potential: the role of chemometric modeling in pulp and paper manufacturing
  10. Effects of chemical environment on softwood kraft pulp: exploring beyond conventional washing methods
  11. Bleaching
  12. Variations in carbohydrates molar mass distribution during chemical degradation and consequences on fibre strength
  13. Mechanical Pulping
  14. Energy consumption in refiner mechanical pulping
  15. Paper Technology
  16. Australian wheat and hardwood fibers for advanced packaging materials
  17. Compression refining: the future of refining? Application to bleached kraft eucalyptus pulp
  18. The effect of nanocellulose to coated paper and recycled paper
  19. Interpreting the relationship between properties of wood and pulping & paper via machine learning algorithms combined with SHAP analysis
  20. Hybridization to prepare environmentally friendly, cost-effective superhydrophobic oleophobic coatings
  21. Paper Physics
  22. Characterising the mechanical behaviour of dry-formed cellulose fibre materials
  23. Paper Chemistry
  24. Study on the properties of ground film paper prepared from lactic acid-modified cellulose
  25. Environmental Impact
  26. Characterization of sludge from a cellulose pulp mill for its potential biovalorization
  27. The in situ green synthesis of metal organic framework (HKUST-1)/cellulose/chitosan composite aerogel (CSGA/HKUST-1) and its adsorption on tetracycline
  28. Evaluation of the potential use of powdered activated carbon in the treatment of effluents from bleached kraft pulp mills
  29. Recycling
  30. Waste newspaper activation by sodium phosphate for adsorption dynamics of methylene blue
Heruntergeladen am 18.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/npprj-2024-0082/pdf
Button zum nach oben scrollen