Startseite Characterization of dual phase boride coatings on Sverker 3 steel and simulation of boron diffusion
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Characterization of dual phase boride coatings on Sverker 3 steel and simulation of boron diffusion

  • Jana Ptačinová

    Jana Ptačinová, MSc., PhD., born in 1989, studied Materials Science at the Slovak Technical University, Faculty of Materials Science and Technology in Trnava, Slovakia. Now, she has been working as assistant professor at the same faculty.

    , Zuzana Gabalcová

    Zuzana Gabalcová, MSc., PhD., born in 1979, studied Materials Science at the Slovak Technical University, Faculty of Materials Science and Technology in Trnava, Slovakia. Now, she has been working as researcher at the same faculty.

    , Juraj Ďurica

    Juraj Ďurica, MSc., PhD., born in 1993, studied Materials Science at the Slovak Technical University, Faculty of Materials Science and Technology in Trnava, Slovakia. Now, he has been working as researcher at the same faculty.

    , Marián Drienovský

    Marián Drienovský, MSc., PhD., born in 1983, studied Materials Science at the Slovak Technical University, Faculty of Materials Science and Technology in Trnava, Slovakia. Now, he has been working as researcher at the same faculty.

    , Mourad Keddam

    Mourad Keddam, Professor, born in 1965, completed his graduate and PhD studies at National Polytechnic School (El-Harrach, Algiers). His research field covers the thermochemical treatments and kinetics modelling. He has been working in the Department of Materials Science at USTHB (Algiers, Algeria) since 2001.

    und Peter Jurči

    Peter Jurči, Professor, born in 1968, inaugurated as a professor in Materials Science and Engineering at the Czech Technical University in Prague. Now, he has been working as a professor at the Slovak Technical University, Faculty of Materials Science and Technology in Trnava, Slovakia.

    EMAIL logo
Veröffentlicht/Copyright: 6. April 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Sverker 3 steel was treated by solid boriding in the range 1173–1273 K for holding times ranged from 1 to 7 h. The processes resulted in two-phase (FeB + Fe2B) boride layers except the treatment at 1173 K for 1 h where the Fe2B was formed only. The growth of borides obeys a typical parabolic law, with the maximum thickness of 120 ± 4.5 µm. Considerable redistribution of carbon and alloying elements took place during boronizing; carbon and silicon were pushed out from borides while chromium and tungsten were rather gathered in these compounds. The microhardness of Fe2B ranged between 1600 and 1700 HV 0.1, and that of FeB reached 2100–2200 HV 0.1. The average diffusion coefficient (ADC) approach was applied by assuming the linearity of boron concentration profiles across the iron boride layers. This approach allowed us to obtain the boron diffusivities in both the FeB and Fe2B. Afterwards, the boron activation energies in both layers were obtained by fitting the temperature evolution of calculated boron diffusivities in the two iron boride phases with the Arrhenius relations. The assessed boron activation energies in FeB and Fe2B were, respectively, 215.18 and 203.6 kJ mol−1. Finally, a comparison of these values of energies was made with literature results.


Corresponding author: Peter Jurči, Faculty of Material Sciences and Technology of the STU in Trnava, J. Bottu 25, 917 24 Trnava , Slovakia, E-mail:

About the authors

Jana Ptačinová

Jana Ptačinová, MSc., PhD., born in 1989, studied Materials Science at the Slovak Technical University, Faculty of Materials Science and Technology in Trnava, Slovakia. Now, she has been working as assistant professor at the same faculty.

Zuzana Gabalcová

Zuzana Gabalcová, MSc., PhD., born in 1979, studied Materials Science at the Slovak Technical University, Faculty of Materials Science and Technology in Trnava, Slovakia. Now, she has been working as researcher at the same faculty.

Juraj Ďurica

Juraj Ďurica, MSc., PhD., born in 1993, studied Materials Science at the Slovak Technical University, Faculty of Materials Science and Technology in Trnava, Slovakia. Now, he has been working as researcher at the same faculty.

Marián Drienovský

Marián Drienovský, MSc., PhD., born in 1983, studied Materials Science at the Slovak Technical University, Faculty of Materials Science and Technology in Trnava, Slovakia. Now, he has been working as researcher at the same faculty.

Mourad Keddam

Mourad Keddam, Professor, born in 1965, completed his graduate and PhD studies at National Polytechnic School (El-Harrach, Algiers). His research field covers the thermochemical treatments and kinetics modelling. He has been working in the Department of Materials Science at USTHB (Algiers, Algeria) since 2001.

Peter Jurči

Peter Jurči, Professor, born in 1968, inaugurated as a professor in Materials Science and Engineering at the Czech Technical University in Prague. Now, he has been working as a professor at the Slovak Technical University, Faculty of Materials Science and Technology in Trnava, Slovakia.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] M. Kulka, “Trends in thermochemical techniques of boriding,” in Current Trends in Boriding, Engineering Materials, Cham, Switzerland, Springer, 2019, pp. 17–98.10.1007/978-3-030-06782-3_4Suche in Google Scholar

[2] E. A. Smol’nikov and L. M. Sarmanova, “Study of the possibility of liquid boriding of high-speed steels,” Met. Sci. Heat Treat., vol. 24, pp. 785–788, 1982, https://doi.org/10.1007/BF00774735.Suche in Google Scholar

[3] I. Morgado-González, M. Ortiz-Dominguez, and M. Keddam, “Characterization of Fe2B layers on ASTM A1011 steel and modelling of boron diffusion,” Mater. Test., vol. 64, no. 1, pp. 55–66, 2022, https://doi.org/10.1515/mt-2021-2007.Suche in Google Scholar

[4] M. Kulka, N. Makuch, A. Pertek, and L. Maldzinski, “Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2-BCl3 atmosphere,” J. Solid State Chem., vol. 199, pp. 196–203, 2014, https://doi.org/10.1016/j.jssc.2012.12.029.Suche in Google Scholar

[5] I. Gunes, S. Ulker, and S. Taktak, “Kinetics of plasma paste boronized AISI 8620 steel in borax paste mixtures,” Protect. Met. Phys. Chem. Surface, vol. 49, no. 5, pp. 567–573, 2013, https://doi.org/10.1134/S2070205113050122.Suche in Google Scholar

[6] E. Filep and S. Farkas, “Kinetics of plasma-assisted boriding,” Surf. Coat. Technol., vol. 199, no. 1, pp. 1–6, 2005, https://doi.org/10.1016/j.surfcoat.2005.03.031.Suche in Google Scholar

[7] M. Sepsi, P. Szobota, and V. Mertinger, “Quasi-Non-destructive characterization of carburized case depth by an application of centerless X-ray diffractometers,” J. Mater. Eng. Perform., vol. 31, no. 1, pp. 4668–4678, 2022, https://doi.org/10.1007/s11665-022-06591-0.Suche in Google Scholar

[8] P. Landgraf, T. Bergelt, L. M. Rymer et al.., “Evolution of microstructure and hardness of the nitrided zone during plasma nitriding of high-alloy tool steel,” Metals, vol. 12, no. 5, May 2022, Art no. 866, https://doi.org/10.3390/met12050866.Suche in Google Scholar

[9] H. Okamoto, “B-Fe (boron-iron),” J. Phase Equilib. Diffus., vol. 25, no. 3, pp. 297–298, 2004, https://doi.org/10.1007/s11669-004-0128-3.Suche in Google Scholar

[10] M. Ortiz-Domínguez, M. Keddam, M. Elias-Espinosa et al.., “Investigation of boriding kinetics of AISI D2 steel,” Surf. Eng., vol. 30, no. 7, pp. 490–497, 2014, https://doi.org/10.1179/1743294414Y.0000000273.Suche in Google Scholar

[11] M. Keddam and M. Kulka, “A kinetic model for the boriding kinetics of AISI D2 steel during the diffusion annealing process,” Protect. Met. Phys. Chem. Surface, vol. 54, no. 2, pp. 282–290, 2018, https://doi.org/10.1134/S2070205118020193.Suche in Google Scholar

[12] V. I. Dybkov, “Boriding of high chromium steels,” Curr. Phys. Chem., vol. 6, no. 2, pp. 137–144, 2016, https://doi.org/10.2174/1877946806666160331203824.Suche in Google Scholar

[13] J. Lentz, A. Röttger, F. Großwendt, and W. Theisen, “Enhancement of hardness, modulus and fracture toughness of the tetragonal (Fe,Cr)2B and orthorhombic (Cr,Fe)2B phases with addition of Cr,” Mater. Des., vol. 156, pp. 113–124, 2018, https://doi.org/10.1016/j.matdes.2018.06.040.Suche in Google Scholar

[14] M. Kulka, N. Makuch, and A. Piasecki, “Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron,” Surf. Coat. Technol., vol. 325, pp. 515–532, 2017, https://doi.org/10.1016/j.surfcoat.2017.07.020.Suche in Google Scholar

[15] G. K. Sireli, A. S. Bora, and S. Timur, “Evaluating the mechanical behavior of electrochemically borided low-carbon steel,” Surf. Coat. Technol., vol. 381, no. 1, Jan. 2020, Art no. 125177, https://doi.org/10.1016/j.surfcoat.2019.125177.Suche in Google Scholar

[16] S. A. da Costa Aichholz, M. S. Meruvia, P. C. Soares Júnior, and R. D. Torres, “Tribocorrosion behavior of boronized AISI 4140 steel,” Surf. Coat. Technol., vol. 352, pp. 265–272, 2018, https://doi.org/10.1016/j.surfcoat.2018.07.101.Suche in Google Scholar

[17] I. Ozbek and C. Bindal, “Mechanical properties of boronized AISI W4 steel,” Surf. Coat. Technol., vol. 154, no. 1, pp. 14–20, 2002, https://doi.org/10.1016/S0257-8972(01)01409-8.Suche in Google Scholar

[18] R. G. Pereira, F. E. Mariani, A. N. Lombardi, and G. E. Totten, “Characterization of layers produced by boriding and boriding-PVD on AISI D2 tool steel,” Mater. Perform. Charact., vol. 5, no. 4, pp. 406–413, 2016, https://doi.org/10.1520/MPC20150067.Suche in Google Scholar

[19] C. K. N. Oliveira, L. C. Casteletti, A. L. Neto, and G. E. Totten, “Production and characterization of boride layers on AISI D2 tool steel,” Vacuum, vol. 84, no. 6, pp. 792–796, 2010, https://doi.org/10.1016/j.vacuum.2009.10.038.Suche in Google Scholar

[20] Ch. Li, B. Shen, G. Li, and Ch. Yang, “Effect of boronizing temperature and time on microstructure and abrasion wear resistance of Cr12Mn2V2 high chromium cast iron,” Surf. Coat. Technol., vol. 202, no. 24, pp. 5882–5886, 2008, https://doi.org/10.1016/j.surfcoat.2008.06.170.Suche in Google Scholar

[21] T. L. Christiansen, F. Bottoli, K. Dahl, N. B. Gammeltoft-Hansen, M. B. Laursen, and M. A. J. Somers, “Hard surface layers by pack boriding and gaseous thermo-reactive deposition and diffusion treatments,” Mater. Perform. Charact., vol. 6, no. 4, pp. 475–491, 2017, https://doi.org/10.1520/MPC20160106.Suche in Google Scholar

[22] M. Keddam, M. Hudáková, J. Ptačinová et al.., “Characterization of boronized layers on Vanadis 6 tool steel,” Surf. Eng., vol. 37, no. 4, pp. 445–454, 2021, https://doi.org/10.1080/02670844.2020.1781377.Suche in Google Scholar

[23] U. Sen and S. Sen, “The fracture toughness of borides formed on boronized cold work tool steels,” Mater. Charact., vol. 50, no. 4, pp. 261–267, 2003, https://doi.org/10.1016/S1044-5803(03)00104-9.Suche in Google Scholar

[24] I. Campos-Silva, M. Flores-Jiménez, G. Rodríguez-Castro, E. Hernández-Sánchez, J. Martínez-Trinidad, and R. Tadeo-Rosas, “Improved fracture toughness of boride coating developed with a diffusion annealing process,” Surf. Coat. Technol., vol. 237, pp. 429–439, 2013, https://doi.org/10.1016/j.surfcoat.2013.05.050.Suche in Google Scholar

[25] I. Campos, M. Farah, N. Lopez, G. Bermudez, G. Rodriguez, and C. V. Velazquez, “Evaluation of the tool life and fracture toughness of cutting tools boronized by the paste boriding process,” Appl. Surf. Sci., vol. 254, no. 10, pp. 2967–2974, 2008, https://doi.org/10.1016/j.apsusc.2007.10.038.Suche in Google Scholar

[26] Y. Kayali and S. Taktak, “Characterization and Rockwell-C adhesion properties of chromium-based borided steels,” J. Adhes. Sci. Technol., vol. 29, no. 19, pp. 205–2075, 2015. https://doi.org/10.1080/01694243.2015.1052617.Suche in Google Scholar

[27] M. Hudáková and P. Jurči, “Microstructure and microhardness of powder boronized Vanadis 6 steel,” Defect Diffusion Forum, vol. 395, pp. 73–84, 2019, https://doi.org/10.4028/www.scientific.net/DDF.395.73.Suche in Google Scholar

[28] Uddeholm Sverker®3. 2016 [Online]. Available at: http://www.wardesteelandmetals.com/upload/files/Partners/UDDEHOLM/Classifies/Cold%20work%20tool/Datasheets/Uddeholm_sverker_3_english.pdf Suche in Google Scholar

[29] A. Bartkowska, P. Jurči, M. Hudáková, D. Bartkowski, M. Kusý, and D. Przestacki, “The influence of the laser beam fluence on change in microstructure, microhardness and phase composition of FeB-Fe2B surface layers produced on Vanadis-6 steel,” Arch. Metall. Mater., vol. 63, no. 2, pp. 791–800, 2018, https://doi.org/10.24425/122405.Suche in Google Scholar

[30] I. Gunes and S. Kanat, “Diffusion kinetics and characterization of borided AISI D6 steel,” Protect. Met. Phys. Chem. Surface, vol. 51, no. 5, pp. 842–846, 2015, https://doi.org/10.1134/S2070205115050111.Suche in Google Scholar

[31] I. Campos-Silva, M. Flores-Jiménez, D. Bravo-Bárcenas et al.., “Evolution of boride layers during a diffusion annealing process,” Surf. Coat. Technol., vol. 309, pp. 155–163, 2017, https://doi.org/10.1016/j.surfcoat.2016.11.054.Suche in Google Scholar

[32] M. Keddam, M. Hudáková, J. Ptačinová, M. Kusy, and P. Jurči, “Modelling of the boronizing kinetics of Vanadis 6 steel by the integral diffusion model,” Protect. Met. Phys. Chem. Surface, vol. 58, no. 2, pp. 347–355, 2022. https://doi.org/10.1134/S207020512202006X.Suche in Google Scholar

[33] M. Keddam and P. Jurči, “Alternative kinetic model of growth of boride layers on steel AISI 316,” Met. Sci. Heat Treat., vol. 63, nos. 7–8, pp. 430–436, 2021, https://doi.org/10.1007/s11041-021-00707-4.Suche in Google Scholar

[34] R. D. Ramdan, T. Takaki, and Y. Tomita, “Free energy problem for the simulations of the growth of Fe2B phase using phase-field method,” Mater. Trans., vol. 49, no. 11, pp. 2625–2631, 2008, https://doi.org/10.2320/matertrans.MRA2008158.Suche in Google Scholar

[35] Z. Nait Abdellah, B. Boumaali, and M. Keddam, “Experimental evaluation and modelling the boronizing kinetics of AISI H13 hot work tool steel,” Mater. Test., vol. 63, no. 12, pp. 1136–1141, 2021, https://doi.org/10.1515/mt-2021-0056.Suche in Google Scholar

[36] I. Campos, R. Torres, G. Ramírez, R. Ganem, and J. Martínez, “Growth kinetics of iron boride layers: dimensional analysis,” Appl. Surf. Sci., vol. 252, no. 24, pp. 8662–8667, 2006, https://doi.org/10.1016/j.apsusc.2005.12.002.Suche in Google Scholar

[37] I. Campos, M. Islas, G. Ramírez, C. VillaVelázquez, and C. Mota, “Growth kinetics of borided layers: artificial neural network and least square approaches,” Appl. Surf. Sci., vol. 253, no. 14, pp. 6226–6231, 2007, https://doi.org/10.1016/j.apsusc.2007.01.070.Suche in Google Scholar

[38] C. I. V. Velázquez-Mendoza, J. L. Rodríguez-Mendoza, V. Ibarra-Galván et al.., “Effect of substrate roughness, time and temperature on the processing of iron boride coatings: experimental and statistical approaches,” Int. J. Surf. Sci. Eng., vol. 8, no. 1, pp. 71–91, 2014, https://doi.org/10.1504/IJSURFSE.2014.059315.Suche in Google Scholar

[39] I. Campos, M. Islas, E. González, P. Ponce, and G. Ramírez, “Use of fuzzy logic for modeling the growth of Fe2B boride layers during boronizing,” Surf. Coat. Technol., vol. 201, no. 6, pp. 2717–2723, 2006, https://doi.org/10.1016/j.surfcoat.2006.05.016.Suche in Google Scholar

[40] M. Keddam and M. Kulka, “Simulation of boriding kinetics of AISI D2 steel using two different approaches,” Met. Sci. Heat Treat., vol. 61, nos. 11–12, pp. 756–763, 2020, https://doi.org/10.1007/s11041-020-00496-2.Suche in Google Scholar

[41] L. G. Yu, X. J. Chen, A. K. Khor, and G. Sundararajan, “FeB/Fe2B phase transformation during SPS pack-boriding: boride layer growth kinetics,” Acta Mater., vol. 53, no. 8, pp. 2361–2368, 2005, https://doi.org/10.1016/j.actamat.2005.01.043.Suche in Google Scholar

[42] H. Kunst and O. Schaaber, “Beobachtungen beim oberflaechenborieren von Stahl,” HTM Haerterei Technische Mitteilungen, vol. 22, no. 1, pp. 1–25, 1967.Suche in Google Scholar

[43] P. Villars and L. D. Calvert, Pearson’s Handbook Of Crystallographic Data for Intermetallic Phases, vol. 1, Metals Park, OH, American Society for Metals, 1989.Suche in Google Scholar

[44] A. Yapici, S. E. Aydin, V. Koc, E. Kanca, and M. Yildiz, “Wear behavior of borided AISI D2 steel under linear reciprocating sliding conditions,” Protect. Met. Phys. Chem. Surface, vol. 55, no. 2, pp. 341–351, 2019, https://doi.org/10.1134/S207020511902028X.Suche in Google Scholar

[45] G. Rodríguez-Castro, I. Campos-Silva, E. Chávez-Gutiérrez, J. Martínez-Trinidad, E. Hernández-Sánchez, and A. Torres-Hernández, “Mechanical properties of FeB and Fe2B layers estimated by Berkovich nanoindentation on tool borided steel,” Surf. Coat. Technol., vol. 215, pp. 291–299, 2013, https://doi.org/10.1016/j.surfcoat.2012.05.145.Suche in Google Scholar

[46] Y. Kayali, I. Günes, and S. Ulu, “Diffusion kinetics of borided AISI 52100 and AISI 440C steels,” Vacuum, vol. 86, no. 10, pp. 1428–1434, 2012, https://doi.org/10.1016/j.vacuum.2012.03.030.Suche in Google Scholar

[47] Y. Kayali and S. Taktak, “Characterization and Rockwell-C adhesion properties of chromium-based borided steels,” J. Adhes. Sci. Technol., vol. 29, no. 19, pp. 2065–2075, 2015, https://doi.org/10.1080/01694243.2015.1052617.Suche in Google Scholar

[48] V. I. Dybkov, “Basics of formation of iron boride coatings,” J. Miner. Metal Mater. Eng., vol. 2, pp. 30–46, 2016, https://doi.org/10.20941/2414-2115.2016.02.5.Suche in Google Scholar

[49] L. Avril, B. Courant, and J. J. Hantzpergue, “Tribological performance of α-Fe(Cr)-Fe2B-FeB and α-Fe(Cr)-h-BN coatings obtained by laser melting,” Wear, vol. 260, nos. 4–5, pp. 351–360, 2006, https://doi.org/10.1016/j.wear.2005.04.012.Suche in Google Scholar

[50] V. I. Dybkov, W. Lengauer, and K. Barmak, “Formation of boride layers at the Fe–10% Cr alloy–boron interface,” J. Alloys Compd., vol. 398, no. 1, pp. 113–122, 2005, https://doi.org/10.1016/j.jallcom.2005.02.033.Suche in Google Scholar

[51] M. Ortiz-Dominguez, M. Espinosa-Elias, M. Keddam et al.., “Growth kinetics and mechanical properties of Fe2B layers formed on AISI D2 steel,” Indian J. Eng. Mater. Sci., vol. 22, no. 1, pp. 231–243, 2015. http://nopr.niscair.res.in/handle/123456789/31511.Suche in Google Scholar

[52] H. Berns, “Restaustenit in ledeburitischen Chromstählen und seine Umwandlung durch Kaltumformen, Tiefkühlen und Anlassen,” HTM J. Heat Treat. Mater., vol. 29, no. 4, pp. 236–247, 1974, https://doi.org/10.1515/htm-1974-290402.Suche in Google Scholar

[53] I. Uslu, H. Omert, M. Ipek, F. G. Celebi, O. Ozdemir, and C. Bindal, “A comparison of borides formed on AISI 1040 and AISI P20 steels,” Mater. Des., vol. 28, no. 6, pp. 1819–1826, 2007, https://doi.org/10.1016/j.matdes.2006.04.019.Suche in Google Scholar

[54] Z. G. Su, X. X. Lv, J. An, Y. L. Yang, and S. J. Sun, “Role of RE element Nd on boronizing kinetics of steels,” J. Mater. Eng. Perform., vol. 21, no. 7, pp. 1337–1345, 2012. https://doi.org/10.1007/s11665-011-0053-7.Suche in Google Scholar

[55] M. Keddam, R. Chegroune, M. Kulka et al.., “Characterization, tribological and mechanical properties of plasma paste borided AISI 316 steel,” Trans. Indian Inst. Met., vol. 71, no. 1, pp. 79–90, 2018, https://doi.org/10.1007/s12666-017-1142-6.Suche in Google Scholar

[56] S. Sen, U. Sen, and C. Bindal, “An approach to kinetic study of borided steels,” Surf. Coat. Technol., vol. 191, no. 2, pp. 274–285, 2005, https://doi.org/10.1016/j.surfcoat.2004.03.040.Suche in Google Scholar

[57] K. Genel, “Boriding kinetics of H13 steel,” Vacuum, vol. 80, no. 5, pp. 451–457, 2006, https://doi.org/10.1016/j.vacuum.2005.07.013.Suche in Google Scholar

[58] I. Campos-Silva, M. Ortiz-Dominguez, C. Tapia-Quintero, G. Rodríguez-Castro, M. Y. Jiménez-Reyes, and E. Chávez-Gutiérrez, “Kinetics and boron diffusion in the FeB/Fe2B layers formed at the surface of borided high-alloy steel,” J. Mater. Eng. Perform., vol. 21, no. 8, pp. 1714–1723, 2012, https://doi.org/10.1007/s11665-011-0088-9.Suche in Google Scholar

[59] Y. Boonplook and P. Juijerm, “Prediction of boride thickness on tool steels AISI D2 and AISI H13 using boriding kinetics,” Adv. Mater. Res., vols. 931–932, pp. 296–300, 2014, https://doi.org/10.4028/www.scientific.net/AMR.931-932.296.Suche in Google Scholar

[60] C. Martini, G. Palombarini, and M. Carbucicchio, “Mechanism of thermochemical growth of iron borides on iron,” J. Mater. Sci., vol. 39, no. 3, pp. 933–937, 2004, https://doi.org/10.1023/B:JMSC.0000012924.74578.87.10.1023/B:JMSC.0000012924.74578.87Suche in Google Scholar

Published Online: 2023-04-06
Published in Print: 2023-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Effect of boric acid addition to seawater on wear and corrosion properties of ultrashort physical vapor deposited Ti layer on a 304 stainless steel
  3. Influence of welding parameters on the interface temperature field of TC4 titanium alloys/304 stainless steel friction stir lap joints
  4. Effect of buttering on the wear behavior of the SMA welded hardfacing layer in a low-carbon steel
  5. Additive manufacturing of hexagonal lattice structures: tensile tests and validation
  6. Dynamic fracture behavior of SA508-3 steel for nuclear power equipment under medium-and low-loading rates
  7. Determination of the size effect on the tensile properties of miniaturized specimens
  8. Heat treatment effects on near threshold region for AISI 4340 steels
  9. Biocompatibility of biomaterials and test methods: a review
  10. Mechanical and tribological behaviour of novel Al–12Si-based hybrid composites
  11. Characterization of dual phase boride coatings on Sverker 3 steel and simulation of boron diffusion
  12. Tribological behaviour of industrial waste based agave sisalana/glass fiber reinforced hybrid composites for marine applications
  13. Optimization of friction stir welding process parameters using multi-criteria decision making approach
  14. Effect of casting modification materials on cutting forces of an Al12Si alloy used in aircraft technology
  15. Effect of deep cryogenic processing cycles on surface roughness, dimensional stability and microstructure of high carbon high chromium tool steel for cutting tool and dies applications
Heruntergeladen am 5.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mt-2022-0250/html
Button zum nach oben scrollen