Abstract
In this article, a new flexible distribution called shifted generalized truncated Nadarajah-Haghighi (SGeTNH) distribution is generalized from the Nadarajah-Haghighi distribution. The hazard rate function of SGeTNH distribution is very flexible and can be increasing, decreasing, bathtub-shaped, upside-down bathtub-shaped, depending on the parameter values. Estimations of parameters of the proposed distribution are derived based on the alternative maximum likelihood estimation (AMLE), least squares estimation (LSE), and Cramér-von Mises estimation (CVME) methods. Monte Carlo simulations are performed to show the accuracy of the proposed methods of estimations. Several real data sets on cancer deaths and COVID-19 daily mortality are applied to illustrate the flexibility and usefulness of SGeTNH distribution for modeling reliability data.
-
(Communicated by Gejza Wimmer)
Acknowledgement
The authors are grateful to the associate editor and an anonymous referee for making many helpful comments and suggestions about an earlier version of this paper.
References
[1] Afify, A. Z.—Mohamed, O. A.: A new three-parameter exponential distribution with variable shapes for the hazard rate: Estimation and applications, Mathematics 8(1) (2020), 1-17.Suche in Google Scholar
[2] Afify, A. Z.—Suzuki, A. K.—Zhang, C.—Nassar, M.: On three-parameter exponential distribution: Properties, Bayesian and non-Bayesian estimation based on complete and censored samples, Comm. Statist. Simulation Comput. 50 (2019), 3799-3819.Suche in Google Scholar
[3] Alghamedi, A.—Dey, S.—Kumar, D.—Dobbah, S. A.: A new extension of extended exponential distribution with applications, Ann. Data Sci. 7 (2020), 139-162.Suche in Google Scholar
[4] Alizadeh, M.—Rasekhi, M.—Yousof, H. M.—Ramires, T. G.—Hamedani, G. G.: Extended exponentiated Nadarajah-Haghighi model: Mathematical properties, characterizations and applications, Studia Sci. Math. Hungar. 55 (2018), 498-522.Suche in Google Scholar
[5] Aljarrah, M. A.—Famoye, F.—Lee, C.: A new Weibull-Pareto distribution, Comm. Statist. Theory Methods 44(19) (2015), 4077-4095.Suche in Google Scholar
[6] Almetwally, E. M.: The odd Weibull inverse Topp-Leone distribution with applications to COVID-19 data, Ann Data Sci. 9(1) (2022), 121-140.Suche in Google Scholar
[7] Almongy, H. M.—Almetwally, E. M.—Aljohani, H. M.—Alghamdi, A. S.—Hafez, E. H.: A new extended Rayleigh distribution with applications of COVID-19 data, Results Phys. 23 (2021), 104012-104012.Suche in Google Scholar
[8] Alzaatreh, A.—Famoye, F.—Lee, C.: Weibull-Pareto distribution and its applications, Comm. Statist. Theory Methods 42 (2013), 1673-1691.Suche in Google Scholar
[9] Alzaatreh, A.—Lee, C.—Famoye, F.: A new method for generating families of continuous distributions, Metron 71(1) (2013), 63-79.Suche in Google Scholar
[10] Al-Zahrani, B.—Sagor, H.: The Poisson-Lomax distribution, Rev. Colombiana Estadíst. 37(1) (2014), 225-245.Suche in Google Scholar
[11] Benkhelifa, L.: The Marshall-Olkin extended generalized Lindley distribution: Properties and applications, Comm. Statist. Simulation Comput. 46 (2017), 8306-8330.Suche in Google Scholar
[12] Bhatti, F. A.—Hamedani, G. G.—Korkmaz, M.—Cordeiro, G. M.—Yousof, H. M.—Ahmad, M.: On Burr III Marshal Olkin family: development, properties, characterizations and applications, J. Stat. Distrib. Appl. 6 (2019), 1-21.Suche in Google Scholar
[13] Chesneau, C.—Okorie, I. E.—Bakouch, H. S. A.: Skewed Nadarajah-Haghighi distribution with some applications, J. Indian Soc. Probab. Stat. 21 (2020), 225-245.Suche in Google Scholar
[14] Cooray, K.: The Weibull-Pareto composite family with applications to the analysis of unimodal failure rate data, Comm. Statist. Theory Methods 38(11) (2009), 1901-1915.Suche in Google Scholar
[15] Cordeiro, G. M.— Afify, A. Z.—Yousof, H. M.—Pescim, R. R.—Aryal, G. R.: The exponentiated Weibull-h family of distributions: Theory and applications, Mediterr. J. Math. 14(155) (2017), 1-22.Suche in Google Scholar
[16] Dey, S.—Nassar, M.—Kumar, D.—Alzaatreh, A.—Tahir, M. H.: A new lifetime distribution with decreasing and upside-down bathtub-shaped hazard rate function, Statistica 79 (2020), 399-426.Suche in Google Scholar
[17] Dias, C. R.—Alizadeh, M.—Cordeiro, G. M.: The beta Nadarajah-Haghighi distribution, Hacet. J. Math. Stat. 47 (2017), 1302-1320.Suche in Google Scholar
[18] Dimitrakopoulou, T.—Adamidis, K.—Loukas, S.: A lifetime distribution with an upside-down bathtub-shaped hazard function, IEEE Trans. Reliab. 56(2) (2007), 308-311.Suche in Google Scholar
[19] Efron, B.: Logistic regression, survival analysis, and the Kaplan-Meier curve, J. Amer. Statist. Assoc. 83(402) (1988), 414-425.Suche in Google Scholar
[20] El-Monsef, M. M. E. A.—Sweilam, N. H.—Sabry, M. A.: The exponentiated power Lomax distribution and its applications, Quality and Reliability Engineering International (2020), 1-24.Suche in Google Scholar
[21] Gradshteyn, I. S.—Ryzhik, I. M.: Table of Integrals, Series, and Products, 7th ed., Academic Press, San Diego, 2007.Suche in Google Scholar
[22] Hand, D. J.—Daly, F.— Mcconway, K.—Lunn, D.—Ostrowski, E.: A Handbook of Small Data Sets, Chapman and Hall, London, 1993.Suche in Google Scholar
[23] Hassan, A. S.—Almetwally, E. M.—Ibrahim, G. M.: Kumaraswamy inverted Topp-Leone distribution with applications to COVID-19 data, Computers Materials & Continua 68 (2021), 337-358.Suche in Google Scholar
[24] Jain, K.—Singla, N.—Sharma, S. K.: The generalized inverse generalized Weibull distribution and its properties, J. Probab. 2014 (2014), Art. ID 736101.Suche in Google Scholar
[25] Kilany, N. M.—Atallah, H. M.: Inverted Beta Lindley distribution, Journal of Advances in Mathematics 13(1) (2017), 7074-7085.Suche in Google Scholar
[26] Klein, J. P.—Moeschberger, M. L.: Survival Analysis: Techniques for Censored and Truncated Data, Springer, New York, 2003.Suche in Google Scholar
[27] Lawless, J. F.: Statistical Models and Methods for Lifetime Data, John Wiley, New York, 2003.Suche in Google Scholar
[28] Lee, E. T.—Wang, J. W.: Statistical Methods for Survival Data Analysis, 3rd ed., Wiley, New York, 2003.Suche in Google Scholar
[29] Lemonte, A. J.: A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function, Comput. Statist. Data Anal. 62 (2013), 149-170.Suche in Google Scholar
[30] Lemonte, A. J.—Cordeiro, G. M.—Moreno-Arenas, G.: A new useful three-parameter extension of the exponential distribution, Statistics 50, (2015), 312-337.Suche in Google Scholar
[31] Lemonte, A. J.—Cordeiro, G. M.: An extended Lomax distribution, Statistics 47(4) (2013), 800-816.Suche in Google Scholar
[32] Lima, M. D. C. S.—Cordeiro, G. M.—Nascimento, A. D. C.—Silva, K. F.: A new model for describing remission times: the generalized beta-generated Lindley distribution, An. Acad. Brasil. Ciênc. 89(3) (2017), 1343-1367.Suche in Google Scholar
[33] Macdonald, P. D. M.: Comment on "An estimation procedure for mixtures of distributions" by Choi and Bulgren, J. R. Stat. Soc. Ser. B. 33 (1971), 326-329.Suche in Google Scholar
[34] Mansoor, M. A.—Tahir, M. H.—Alzaatreh A.—Cordeiro, G. M.: The Poisson Nadarajah-Haghighi distribution: properties and applications to lifetime data, Int. J. Reliab. Qual. Safety Eng. 27(1) (2020), 1-21.Suche in Google Scholar
[35] Mansour, M. M.—Farsi, M. A.—Mohamed, S. M.—Abd Elrazik, E. M.: Modeling the COVID-19 pandemic dynamics in Egypt and Saudi Arabia, Mathematics 9(8) (2021), 1-13.Suche in Google Scholar
[36] Maurya, R. K.—Tripathi, Y. M.—Rastogi, M. K.: Estimation and Prediction for a Progressively First-Failure Censored Inverted Exponentiated Rayleigh Distribution, J. Stat. Theory Pract. 13(39) (2019), 1-48.Suche in Google Scholar
[37] Mirmostafaee, S. M. T. K.—Mahdizadeh, M.—Lemonte, A. J.: The Marshall-Olkin extended generalized Rayleigh distribution: Properties and applications, Comm. Statist. Theory Methods 46(2) (2017), 653-671.Suche in Google Scholar
[38] Nadarajah, S.—Haghighi, -F.: An extension of the exponential distribution, Statistics 45(6) (2011), 543-558.Suche in Google Scholar
[39] Nasiru, S.—Abubakari ,A. G.—Abonongo, J.: Quantile generated Nadarajah-Haghighi family of distributions, Ann. Data Sci. 9 (2022), 1161-1180.Suche in Google Scholar
[40] Nassar, M.—Afify ,A. Z.— Shakhatreh, M. K.: Estimation Methods of Alpha Power Exponential Distribution with Applications to Engineering and Medical Data, Pak. J. Stat. Oper. Res. 16(1) (2020), 149-166.Suche in Google Scholar
[41] Nassar, M.—Alzaatreh, A.— Abo-Kasem, O. E.—Mead, M.—Mansoor, M.: A New Family of Generalized Distributions Based on Alpha Power Transformation with Application to Cancer Data, Annals of Data Science 5 (2018), 421-436.Suche in Google Scholar
[42] Ortega, E. M.—Lemonte, A. J.—Silva, G. O.—Cordeiro, G. M.: New flexible models generated by gamma random variables for lifetime modeling, J. Appl. Stat. 42 (2015), 2159-2179.Suche in Google Scholar
[43] Pen̋A-Ramírez, F. A.—Guerra, R. R.—Cordeiro, G. M.: The Nadarajah-Haghighi Lindley distribution, An. Acad. Brasil. Ciênc. 91(1) (2019), Art. ID e20170856.Suche in Google Scholar
[44] Pillai, J. K.—Moolath, G. B.: A new generalization of the Fréchet distribution: Properties and application, Statistica 79(3) (2019), 267-289.Suche in Google Scholar
[45] Prentice, R. L.: Exponential survival with censoring and explanatory variables, Biometrika 60 (1973), 279-288.Suche in Google Scholar
[46] Rady, E. A.—Hassanein, W. A.—Elhaddad, T. A.: The power Lomax distribution with an application to bladder cancer data, SpringerPlus 5 (2016), 1-22.Suche in Google Scholar
[47] Ramos, M. W.—Cordeiro, G. M.—Marinho, P. R.—Dias ,C. R.—Hamedani, G. G.: The Zografos-Balakrishnan log-logistic distribution: properties and applications, J. Stat. Theory Appl. 12 (2013), 225-244.Suche in Google Scholar
[48] Reyad, H.—Selim, M. A.—Othman, S.: The Nadarajah Haghighi Topp Leone-G Family of distributions with mathematical properties and applications, Pakistan J. Stat. Oper. Res. 15(4) (2019), 849-866.Suche in Google Scholar
[49] Shafiq, A.—Lone, S. A.—Sindhu, T. N.—Al-Mdallal, Q. M.—Muhammad, T.: A new modified Kies Fréchet distribution: Applications of mortality rate of Covid-19, Results Phys. 28 (2021), 104638-104638.Suche in Google Scholar
[50] Shakhatreh, M. K.—Dey, S.—Kumar, D.: Inverse Lindley power series distributions: a new compounding family and regression model with censored data, J. Appl. Stat. 49(13) (2022), 3451-3476.Suche in Google Scholar
[51] Shakhatreh, M. K.— Lemonte, A. J.—Cordeiro, G. M.: On the generalized extended exponential-Weibull distribution: properties and different methods of estimation, Int. J. Comput. Math. 97 (2020), 1029-1057.Suche in Google Scholar
[52] Shakhatreh, M. K.: A new three-parameter extension of the log-logistic distribution with applications to survival data, Comm. Statist. Theory Methods 47(21) (2018), 5205-5226.Suche in Google Scholar
[53] Sharma, V. K.: Bayesian analysis of head and neck cancer data using generalized inverse Lindley stress-strength reliability model, Comm. Statist. Theory Methods 47(5) (2018), 1155-1180.Suche in Google Scholar
[54] Sharma, V. K.—Singh, S. K.—Singh, U.—Agiwal, V.: The inverse Lindley distribution: a stress-strength reliability model with application to head and neck cancer data, Int. J. Ind. Eng. Comput. 32 (2014), 162-173.Suche in Google Scholar
[55] Smith, R. L.: Maximum likelihood estimation in a class of nonregular cases, Biometrika 72(1) (1985), 67-90.Suche in Google Scholar
[56] Swain, J. J.—Venkatraman, S.—Wilson, J. R.: Least-squares estimation of distribution functions in Johnson’s translation system, J. Stat. Comput. Simul. 29 (1988), 271-297.Suche in Google Scholar
[57] Tahir, M. H.—Cordeiro, G. M.—Alizadeh, M.—Mansoor, M. A.—Zubair, M.—Hamedani, G. G.: The odd generalized exponential family of distributions with applications, J. Stat. Distrib. Appl. 2 (2015), 1-28.Suche in Google Scholar
[58] Tahir, M. H.—Cordeiro, G. M.—Alzaatreh, A.—Mansoor M. A.—Zubair, M.: A new Weibull-Pareto distribution: properties and applications Comm. Statist. Simul. Comput. 45 (2016), 3548-3567.Suche in Google Scholar
[59] Tahir, M. H.—Mansoor, M. A.—Zubair, M.—Hamedani, G. G.: McDonald log-logistic distribution with an application to breast cancer data, J. Stat. Theory Appl. 13 (2014), 65-82.Suche in Google Scholar
[60] West, M.: Analysis of nasopharynx cancer data using dynamic Bayesian models, Warwick Research Report 109 and Technical Report 7-1987 of the Department of Mathematics, II, University of Rome, 1987.Suche in Google Scholar
[61] Zea, L. M.—Silva, R. B.— Bourguignon, M.—Santos, A. M.—Cordeiro, G. M.: The Beta exponentiated Pareto distribution with application to bladder cancer susceptibility, International Journal of Statistics and Probability 1(2) (2012), 8-19.Suche in Google Scholar
© 2023 Mathematical Institute Slovak Academy of Sciences
Artikel in diesem Heft
- RNDr. Stanislav Jakubec, DrSc. passed away
- Schur m-power convexity for general geometric Bonferroni mean of multiple parameters and comparison inequalities between several means
- Conditions forcing the existence of relative complements in lattices and posets
- Radically principal MV-algebras
- A topological duality for dcpos
- Padovan or Perrin numbers that are concatenations of two distinct base b repdigits
- Addendum to “A generalization of a result on the sum of element orders of a finite group”
- Remarks on w-distances and metric-preserving functions
- Solution of logarithmic coefficients conjectures for some classes of convex functions
- Multiple periodic solutions of nonautonomous second-order differential systems with (q, p)-Laplacian and partially periodic potentials
- Asymptotic stability of nonlinear neutral delay integro-differential equations
- On Catalan ideal convergent sequence spaces via fuzzy norm
- Fourier transform inversion: Bounded variation, polynomial growth, Henstock–Stieltjes integration
- (ε, A)-approximate numerical radius orthogonality and numerical radius derivative
- Wg-Drazin-star operator and its dual
- On the Lupaş q-transform of unbounded functions
- K-contact and (k, μ)-contact metric as a generalized η-Ricci soliton
- Compactness with ideals
- Number of cells containing a given number of particles in a generalized allocation scheme
- A new generalization of Nadarajah-Haghighi distribution with application to cancer and COVID-19 deaths data
- Compressive sensing using extropy measures of ranked set sampling
- A note on star partial order preservers on the set of all variance-covariance matrices
Artikel in diesem Heft
- RNDr. Stanislav Jakubec, DrSc. passed away
- Schur m-power convexity for general geometric Bonferroni mean of multiple parameters and comparison inequalities between several means
- Conditions forcing the existence of relative complements in lattices and posets
- Radically principal MV-algebras
- A topological duality for dcpos
- Padovan or Perrin numbers that are concatenations of two distinct base b repdigits
- Addendum to “A generalization of a result on the sum of element orders of a finite group”
- Remarks on w-distances and metric-preserving functions
- Solution of logarithmic coefficients conjectures for some classes of convex functions
- Multiple periodic solutions of nonautonomous second-order differential systems with (q, p)-Laplacian and partially periodic potentials
- Asymptotic stability of nonlinear neutral delay integro-differential equations
- On Catalan ideal convergent sequence spaces via fuzzy norm
- Fourier transform inversion: Bounded variation, polynomial growth, Henstock–Stieltjes integration
- (ε, A)-approximate numerical radius orthogonality and numerical radius derivative
- Wg-Drazin-star operator and its dual
- On the Lupaş q-transform of unbounded functions
- K-contact and (k, μ)-contact metric as a generalized η-Ricci soliton
- Compactness with ideals
- Number of cells containing a given number of particles in a generalized allocation scheme
- A new generalization of Nadarajah-Haghighi distribution with application to cancer and COVID-19 deaths data
- Compressive sensing using extropy measures of ranked set sampling
- A note on star partial order preservers on the set of all variance-covariance matrices