Startseite Schur m-power convexity for general geometric Bonferroni mean of multiple parameters and comparison inequalities between several means
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Schur m-power convexity for general geometric Bonferroni mean of multiple parameters and comparison inequalities between several means

  • Yi-Ting Wu und Feng Qi EMAIL logo
Veröffentlicht/Copyright: 15. Februar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the paper, the authors present the Schur m-power convexity and concavity for the general geometric Bonferroni mean of multiple parameters and establish comparison inequalities for bounding the general geometric Bonferroni mean in terms of the arithmetic, geometric, and harmonic means. These Schur convexity and concavity provide a unified generalization of the Schur convexity and concavity for the geometric Bonferroni means of two or three parameters.

MSC 2010: 05-02; 26-02; 26B25; 26D15; 26D20; 26E60

Dedicated to the memory of Professor Sen-Lin Xu who passed away on October 2, 2022, aged 82

This work was supported by the Natural Science Foundation of Zhejiang Province under Grant Number LY21A010016.


Acknowledgement

The authors are thankful anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

  1. (Communicated by Tomasz Natkaniec)

References

[1] BELIAKOV, G.—JAMES, S.—MORDELOVÁ, J.—RÜCKSCHLOSSOVÁ, T.—YAGER, R. R.: Generalized Bonferroni mean operators in multi-criteria aggregation, Fuzzy Sets and Systems 161(2) (2010), 2227–2242.10.1016/j.fss.2010.04.004Suche in Google Scholar

[2] BONFERRONI, C.: Sulle medie multiple di potenze, Boll. Unione Mat. Ital. 5(3) (1950), 267–270.Suche in Google Scholar

[3] CHU, Y.-M.—XIA, W.-F.: Necessary and sufficient conditions for the Schur harmonic convexity of the generalized Muirhead mean, Proc. A. Razmadze Math. Inst. 152 (2010), 19–27.Suche in Google Scholar

[4] CHU, Y.-M.—ZHANG, X.-M.—WANG, G.-D.: The Schur geometrical convexity of the extended mean values, J. Convex Anal. 15(4) (2008), 707–718.Suche in Google Scholar

[5] DUTTA, B.—CHAN, F. T. S.—GUHA, D.—NIU, B.—RUAN, J. H.: Aggregation of heterogeneously related information with extended geometric Bonferroni mean and its application in group decision making, Int. J. Intell. Syst. 33(3) (2018), 487–513.10.1002/int.21936Suche in Google Scholar

[6] FU, L.-L.—XI, B.-Y.—SRIVASTAVA, H. M.: Schur-convexity of the generalized Heronian means involving two positive numbers, Taiwanese J. Math. 15(6) (2011), 2721–2731.10.11650/twjm/1500406493Suche in Google Scholar

[7] LIANG, D.—DARKO, A. P.—XU, Z.—QUAN, W.: The linear assignment method for multicriteria group decision making based on interval-valued Pythagorean fuzzy Bonferroni mean, Int. J. Intell. Syst. 33(11) (2018), 2101–2138.10.1002/int.22006Suche in Google Scholar

[8] LIU, P.: Two-dimensional uncertain linguistic generalized normalized weighted geometric Bonferroni mean and its application to multiple-attribute decision making, Sci. Iran. 25(1) (2018), 450–465.Suche in Google Scholar

[9] MARSHALL, A. W.—OLKIN, I.—ARNOLD, B. C.: Inequalities: Theory of Majorization and its Applications, 2nd ed., Springer Verlag, New York-Dordrecht-Heidelberg-London, 2011.10.1007/978-0-387-68276-1Suche in Google Scholar

[10] NICULESCU, C. P.—PERSSON, L.-E.: Convex Functions and Their Applications: A Contemporary Approach. 2nd ed., CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, Cham, 2018.Suche in Google Scholar

[11] PARK, J. H.—KIM, J. Y.—KWUN, Y. C.: Intuitionistic fuzzy optimized weighted geometric Bonferroni means and their applications in group decision making, Fund. Inform. 144(3–4) (2016), 363–381.10.3233/FI-2016-1341Suche in Google Scholar

[12] QI, F.: A new lower bound in the second Kershaw's double inequality, J. Comput. Appl. Math. 214(2) (2008), 610–616.10.1016/j.cam.2007.03.016Suche in Google Scholar

[13] QI, F.—GUO, B.-N.: The reciprocal of the geometric mean of many positive numbers is a Stieltjes transform, J. Comput. Appl. Math. 311 (2017), 165–170.10.1016/j.cam.2016.07.006Suche in Google Scholar

[14] QI, F.—GUO, S.—CHEN, S.-X.: A new upper bound in the second Kershaw's double inequality and its generalizations, J. Comput. Appl. Math. 220(1–2) (2008), 111–118.10.1016/j.cam.2007.07.037Suche in Google Scholar

[15] QI, F.—LIM, D.: Integral representations of bivariate complex geometric mean and their applications, J. Comput. Appl. Math. 330 (2018), 41–58.10.1016/j.cam.2017.08.005Suche in Google Scholar

[16] QI, F.—NIU, D.-W.—LIM, D.—GUO, B.-N.: Closed formulas and identities for the Bell polynomials and falling factorials, Contrib. Discrete Math. 15(1) (2020), 163–174.10.55016/ojs/cdm.v15i1.68111Suche in Google Scholar

[17] QI, F.—SHI, X.-T.—LIU, F. F.: Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers, Acta Univ. Sapientiae Math. 8(2) (2016), 282–297.10.1515/ausm-2016-0019Suche in Google Scholar

[18] QI, F.—SHI, X.-T.—MAHMOUD, M.—LIU, F. F.: Schur-convexity of the Catalan–Qi function related to the Catalan numbers, Tbilisi Math. J. 9(2) (2016), 141–150.10.1515/tmj-2016-0026Suche in Google Scholar

[19] SHI, H.-N.: Schur Convex Functions and Inequalities, Harbin Institute of Technology Press, Harbin, China, 2017.Suche in Google Scholar

[20] SHI, H.-N.—JIANG, Y.-M.—JIANG, W.-D.: Schur-convexity and Schur-geometrically concavity of Gini mean, Comput. Math. Appl. 57(2) (2009), 266–274.10.1016/j.camwa.2008.11.001Suche in Google Scholar

[21] SHI, H.-N.—WU, S.-H.: Schur convexity of the generalized geometric Bonferroni mean and the relevant inequalities, J. Inequal. Appl. 2018, Art. No. 8, 11 pp.10.1186/s13660-017-1605-7Suche in Google Scholar PubMed PubMed Central

[22] SHI, H.-N.—WU, S.-H.: Schur m-power convexity of geometric Bonferroni mean, Ital. J. Pure Appl. Math. 38 (2017), 769–776.Suche in Google Scholar

[23] SHI, H.-N.—WU, S.-H.—QI, F.: An alternative note on the Schur-convexity of the extended mean values, Math. Inequal. Appl. 9(2) (2006), 219–224.10.7153/mia-09-22Suche in Google Scholar

[24] SHI, H.-N.—ZHANG, J.: Schur-convexity, Schur geometric and Schur harmonic convexities of dual form of a class symmetric functions, J. Math. Inequal. 8(2) (2014), 349–358.10.7153/jmi-08-25Suche in Google Scholar

[25] TIAN, Z.-P.—WANG, J.—ZHANG, H.-Y.—CHEN, X.-H.—WANG, J.-Q.: Simplified neutrosophic linguistic normalized weighted Bonferroni mean operator and its application to multi-criteria decision-making problems, Filomat 30(12) (2016), 3339–3360.10.2298/FIL1612339TSuche in Google Scholar

[26] WANG, D.-S.—FU, C.-R.—SHI, H.-N.: Schur m-power convexity for a mean of two variables with three parameters, J. Nonlinear Sci. Appl. 9(5) (2016), 2298–2304.10.22436/jnsa.009.05.32Suche in Google Scholar

[27] WANG, W.—YANG, S.: Schur m-power convexity of a class of multiplicatively convex functions and applications, Abstr. Appl. Anal. 2014, Art. ID 258108, 12 pp.10.1155/2014/258108Suche in Google Scholar

[28] WANG, W.—YANG, S.: Schur m-power convexity of generalized Hamy symmetric function, J. Math. Inequal. 8(3) (2014), 661–667.10.7153/jmi-08-48Suche in Google Scholar

[29] WU, S.-H.: Generalization and sharpness of the power means inequality and their applications, J. Math. Anal. Appl. 312(2) (2005), 637–652.10.1016/j.jmaa.2005.03.050Suche in Google Scholar

[30] WU, S.-H.—CHU, Y.-M.: Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters, J. Inequal. Appl. 2019 (2019), Art. No. 57, 11 pp.10.1186/s13660-019-2013-ySuche in Google Scholar

[31] WU, S.-H.—DEBNATH, L.: Inequalities for differences of power means in two variables, Anal. Math. 37(2) (2011), 151–159.10.1007/s10476-011-0203-zSuche in Google Scholar

[32] WU, S.-H.—SHI, H.-N.: A relation of weak majorization and its applications to certain inequalities for means, Math. Slovaca 61(4) (2011), 561–570.10.2478/s12175-011-0028-zSuche in Google Scholar

[33] XI, B.-Y.—GAO, D.-D.—ZHANG, T.—GUO, B.-N.—QI, F.: Shannon type inequalities for Kapur's entropy, Mathematics 7(1) (2019), Art. No. 22, 8 pp.10.3390/math7010022Suche in Google Scholar

[34] XIA, M.—XU, Z.—ZHU, B.: Generalized intuitionistic fuzzy Bonferroni means, Int. J. Intell. Syst. 27(1) (2012), 23–47.10.1002/int.20515Suche in Google Scholar

[35] XIA, M.—XU, Z.—ZHU, B.: Geometric Bonferroni means with their application in multi-criteria decision making, Knowl. Based Syst. 40 (2013), 88–100.10.1016/j.knosys.2012.11.013Suche in Google Scholar

[36] Xu, Z.—Yager, R. R.: Intuitionistic Fuzzy Bonferroni Means, IEEE Trans. Syst. Man Cybern. B Cybern. 41(2) (2011), 568–578.10.1109/TSMCB.2010.2072918Suche in Google Scholar PubMed

[37] Yang, Z.-H.: Schur power convexity of Gini means, Bull. Korean Math. Soc. 50(2) (2013), 485–498.10.4134/BKMS.2013.50.2.485Suche in Google Scholar

[38] Yang, Z.-H.: Schur power convexity of Stolarsky means, Publ. Math. Debrecen 80(1–2) (2012), 43–66.10.5486/PMD.2012.4812Suche in Google Scholar

[39] Yang, Z.-H.: Schur power convexity of the Daróczy means, Math. Inequal. Appl. 16(3) (2013), 751–762.10.7153/mia-16-57Suche in Google Scholar

[40] YIN, H.-P.—LIU, X.-M.—WANG, J.-Y.—GUO, B.-N.: Necessary and sufficient conditions on the Schur convexity of a bivariate mean, AIMS Math. 6(1) (2021), 296–303.10.3934/math.2021018Suche in Google Scholar

[41] YIN, H.-P.—SHI, H.-N.,—QI, F.: On Schur m-power convexity for ratios of some means, J. Math. Inequal. 9(1) (2015), 145–153.10.7153/jmi-09-14Suche in Google Scholar

[42] ZHENG, N.-G.—ZHANG, Z.-H.—ZHANG, X.-M.: Schur-convexity of two types of one-parameter mean values in n variables, J. Inequal. Appl. 2007, Art. ID 78175, 10 pp.10.1155/2007/78175Suche in Google Scholar

Received: 2021-09-10
Accepted: 2021-11-29
Published Online: 2023-02-15
Published in Print: 2023-02-23

© 2023 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. RNDr. Stanislav Jakubec, DrSc. passed away
  2. Schur m-power convexity for general geometric Bonferroni mean of multiple parameters and comparison inequalities between several means
  3. Conditions forcing the existence of relative complements in lattices and posets
  4. Radically principal MV-algebras
  5. A topological duality for dcpos
  6. Padovan or Perrin numbers that are concatenations of two distinct base b repdigits
  7. Addendum to “A generalization of a result on the sum of element orders of a finite group”
  8. Remarks on w-distances and metric-preserving functions
  9. Solution of logarithmic coefficients conjectures for some classes of convex functions
  10. Multiple periodic solutions of nonautonomous second-order differential systems with (q, p)-Laplacian and partially periodic potentials
  11. Asymptotic stability of nonlinear neutral delay integro-differential equations
  12. On Catalan ideal convergent sequence spaces via fuzzy norm
  13. Fourier transform inversion: Bounded variation, polynomial growth, Henstock–Stieltjes integration
  14. (ε, A)-approximate numerical radius orthogonality and numerical radius derivative
  15. Wg-Drazin-star operator and its dual
  16. On the Lupaş q-transform of unbounded functions
  17. K-contact and (k, μ)-contact metric as a generalized η-Ricci soliton
  18. Compactness with ideals
  19. Number of cells containing a given number of particles in a generalized allocation scheme
  20. A new generalization of Nadarajah-Haghighi distribution with application to cancer and COVID-19 deaths data
  21. Compressive sensing using extropy measures of ranked set sampling
  22. A note on star partial order preservers on the set of all variance-covariance matrices
Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0002/html
Button zum nach oben scrollen