Startseite Sufficient conditions for p-valent functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sufficient conditions for p-valent functions

  • Qaiser Khan , Jacek Dziok , Mohsan Raza EMAIL logo und Muhammad Arif
Veröffentlicht/Copyright: 4. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the current article, we examine some properties of analytic functions associated with cosine and exponential functions. We calculate some conditions on α so that; if 1+αz2pf(z)p, 1+αz2f(z)pf(z), 1+αzp+2f(z)pf2(z) and 1+αz2p+2f(z)pf3(z) are subordinated by Janowski functions, then f(z)zpcos(z). Further, we also discuss the same implications for f(z)zpez.

MSC 2010: Primary 30C45; 30C50
  1. (Communicated by Stanisława Kanas)

References

[1] Abdullah, A.—Arif, M.—Alghamdi, M. A.—Hussain, S.: Starlikness associated with cosine hyperbolic function, Mathematics 8 (2020), Art. ID 1118.10.3390/math8071118Suche in Google Scholar

[2] Ali, R. M.—Cho, N. E.—Ravichandran, V.—Kumar, S. S.: Differential subordination for functions associated with the lemniscate of Bernoulli's, Taiwanese J. Math. 16 (2012), 1017–1026.10.11650/twjm/1500406676Suche in Google Scholar

[3] Arif, M.—Ahmad, K.—Liu, J.-L.—Sokół, J.: A new class of analytic functions associated with Salagean operator, J. Func. Spaces 2019 (2019), Art. ID 5157394.10.1155/2019/6157394Suche in Google Scholar

[4] Bano, K.—Raza, M.: Starlike functions associated with cosine functions, Bull. Iran. Math. Soc. (2020), https://doi.org/10.1007/s41980-020-00456-9.10.1007/s41980-020-00456-9Suche in Google Scholar

[5] Cho, N. E.—Kumar, V.—Kumar, S. S.—Ravichadran, V.: Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc. 45 (2019), 213–232.10.1007/s41980-018-0127-5Suche in Google Scholar

[6] Cho, N. E.—Kumar, S.—Kumar, V.—Ravichandran, V.—Srivastava, H. M.: Starlike functions related to the Bell numbers, Symmetry 11 (2019), Art. ID 219.10.3390/sym11020219Suche in Google Scholar

[7] Dziok, J.—Raina, R. K.—Sokół, J.: On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comp. Model. 57 (2013), 1203–1211.10.1016/j.mcm.2012.10.023Suche in Google Scholar

[8] Haq, M.—Raza, M.—Arif, M.—Khan, Q.—Tang, H.: q-analogue of differential subordinations, Mathematics 7 (2019), Art. ID 724.10.3390/math7080724Suche in Google Scholar

[9] Hayman, W. H.: Multivalent Functions, 2nd edition, Cambridge Univ. Press, 1994.10.1017/CBO9780511526268Suche in Google Scholar

[10] Jack, I. S.: Functions starlike and convex of order alpha, J. London Math. Soc. 2 (1971), 469–474.10.1112/jlms/s2-3.3.469Suche in Google Scholar

[11] Janowski, W.: Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23 (1970), 159–177.10.4064/ap-23-2-159-177Suche in Google Scholar

[12] Kanas, S.—Răducano, D.: Some class of analytic functions related to conic domains, Math. Slovaca 64 (2014), 1183–1196.10.2478/s12175-014-0268-9Suche in Google Scholar

[13] Kargar, R.—Ebadian, A.—Sokół, J.: On Booth lemniscate and starlike functions, Anal. Math. Phy. 9 (2019), 143–154.10.1007/s13324-017-0187-3Suche in Google Scholar

[14] Kumar, S. S.—Kumar, V.—Ravichandran, V.—Cho, N. E.: Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Ineq. Appl. 2013 (2013), Art. ID 176.10.1186/1029-242X-2013-176Suche in Google Scholar

[15] Kumar, S.—Ravichandran, V.: A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2016), 199–212.Suche in Google Scholar

[16] Kumar, S.—Ravichandran, V.: Subordinations for functions with positive real part, Complex Anal. Oper. Theory 12 (2018), 1179–1191.10.1007/s11785-017-0690-4Suche in Google Scholar

[17] Ma, W.—Minda, D.: A unified treatment of some special classes of univalent functions. In: Proceeding of the Conference on Complex Analysis (Z. Li, F. Ren, L. Yang and S. Zhang, eds.), Int. Press, 1994, pp. 157–169.Suche in Google Scholar

[18] Mendiratta, R.—Nagpal, S.—Ravichandran, V.: On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), 365–386.10.1007/s40840-014-0026-8Suche in Google Scholar

[19] Noor, K. I.—Arif, M.: Mapping properties of an integral operator, Appl. Math. Lett. 25 (2012), 1826–1829.10.1016/j.aml.2012.02.030Suche in Google Scholar

[20] Paprocki, E.—Sokół, J.: The extremal problems in some subclass of strongly starlike functions, Folia Scient. Univ. Techn. Resoviensis 157 (1996), 89–94.Suche in Google Scholar

[21] Raina, R. K.—Sokół, J.: On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat. 44 (2015), 1427–1433.10.15672/HJMS.2015449676Suche in Google Scholar

[22] Raza, M.—Sokół, J.—Mushtaq, S.: Differential subordinations for analytic functions, Iran. J. Sci. Tech. Trans. A 43 (2019), 883–890.10.1007/s40995-017-0430-7Suche in Google Scholar

[23] Sharma, K.—Jain, N. K.—Ravichandran, V.: Starlike functions associated with a cardioid, Afr. Mat. 27 (2016), 923–939.10.1007/s13370-015-0387-7Suche in Google Scholar

[24] Sharma, K.—Ravichandran, V.: Applications of subordination theory to starlike functions, Bull. Iran. Math. Soc. 42 (2016), 761–777.Suche in Google Scholar

[25] Shi, L.—Ali, I.—Arif, M.—Cho, N. E.—Hussain, S.—Khan, H.: A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain, Mathematics 7 (2019), Art. ID 418.10.3390/math7050418Suche in Google Scholar

[26] Shi, L.—Srivastava, H. M.—Arif, M.—Hussain, S.—Khan, H.: An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry 11 (2019), Art. ID 598.10.3390/sym11050598Suche in Google Scholar

[27] Sokół, J.—Stankiewicz, J.: Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19 (1996), 101–105.Suche in Google Scholar

Received: 2020-03-31
Accepted: 2020-11-11
Published Online: 2021-10-04
Published in Print: 2021-10-26

© 2021 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular papers
  2. Algebraic structures for pairwise comparison matrices: Consistency, social choices and Arrow’s theorem
  3. Polynomial functions on rings of dual numbers over residue class rings of the integers
  4. Sufficient conditions for p-valent functions
  5. Upper bounds for analytic summand functions and related inequalities
  6. Global structure for a fourth-order boundary value problem with sign-changing weight
  7. On the nonexistence conditions of solution of two-point in time problem for nonhomogeneous PDE
  8. Solvability of a nonlinear three-dimensional system of difference equations with constant coefficients
  9. Properties of critical and subcritical second order self-adjoint linear equations
  10. Korovkin type approximation via statistical e-convergence on two dimensional weighted spaces
  11. Approximation by a new sequence of operators involving Apostol-Genocchi polynomials
  12. Poisson like matrix operator and its application in p-summable space
  13. On the homological and algebraical properties of some Feichtinger algebras
  14. Disjoint topological transitivity for weighted translations generated by group actions
  15. On simultaneous limits for aggregation of stationary randomized INAR(1) processes with poisson innovations
  16. Marshall-Olkin Lindley-Log-logistic distribution: Model, properties and applications
  17. The shifted Gompertz-G family of distributions: Properties and applications
  18. On the testing hypothesis in uniform family of distributions with nuisance parameter
  19. Clarkson inequalities related to convex and concave functions
Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0040/pdf
Button zum nach oben scrollen