Startseite On the homological and algebraical properties of some Feichtinger algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the homological and algebraical properties of some Feichtinger algebras

  • Ali Rejali EMAIL logo und Navid Sabzali
Veröffentlicht/Copyright: 4. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let G be a locally compact group (not necessarily abelian) and B be a homogeneous Banach space on G, which is in a good situation with respect to a homogeneous function algebra on G. Feichtinger showed that there exists a minimal Banach space Bmin in the family of all homogenous Banach spaces C on G, containing all elements of B with compact support. In this paper, the amenability and super amenability of Bmin with respect to the convolution product or with respect to the pointwise product are showed to correspond to amenability, discreteness or finiteness of the group G and conversely. We also prove among other things that Bmin is a symmetric Segal subalgebra of L1(G) on an IN-group G, under certain conditions, and we apply our results to study pseudo-amenability and some other homological properties of Bmin on IN-groups. Furthermore, we determine necessary and sufficient conditions on A under which Amin with the pointwise product is an abstract Segal algebra or Segal algebra in A, whenever A is a homogeneous function algebra with an approximate identity. We apply these results to study amenability of some Feichtinger algebras with respect to the pointwise product.

MSC 2010: 46H05; 46H25; 46J05; 46J20
  1. (Communicated by Emanuel Chetcuti)

References

[1] Abtahi, F.—Rejali, A.—Sabzali, N.: The amalgam spaceL(p,q)π(G)on IN-groups, Math. Slovaca 70(1) (2020), 125–134.10.1515/ms-2017-0337Suche in Google Scholar

[2] Bertrandias, J. P.—Darty, C.—Dupuis, C.: Unions et intersections d'espace Lp invariantes par translation ou convolution, Ann. Ins. Fourier (Grenoble) 28 (1978), 58–84.10.5802/aif.689Suche in Google Scholar

[3] Burnham, J. T.: Closed ideals in subalgebras of Banach algebras I, Proc. Amer. Math. Soc. 32 (1972), 551–555.10.1090/S0002-9939-1972-0295078-5Suche in Google Scholar

[4] Busby, R. C.—Smith, H. A.: Product-convolution operators and mixed-norm spaces, Trans. Amer. Math. Soc. 263 (1981), 309–341.10.1090/S0002-9947-1981-0594411-4Suche in Google Scholar

[5] Eymard, P.: L' algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–238.10.24033/bsmf.1607Suche in Google Scholar

[6] Feichtinger, H. G.: Banach convolution algebras of Wiener type, Proc. Conf. on Functions, Series, Operators, Budapest 1980, Colloq. Math. Soc. Janos Bolyai 35 (1983), 509–524.Suche in Google Scholar

[7] Feichtinger, H. G.: A characterization minimal homogeneous Banach spaces, Proc. Amer. Math. Soc. 81 (1981), 55–61.10.1090/S0002-9939-1981-0589135-9Suche in Google Scholar

[8] Feichtinger, H. G.: Modulation spaces: Looking back and ahead, Sampl. Theory Image Process 5(2) (2006), 109–140.10.1007/BF03549447Suche in Google Scholar

[9] Feichtinger, H. G.: Compactness in translation invariant Banach spaces of distributions and compact multiplier, J. Math. Anal. Appl. 102(2) (1984), 289–327.10.1016/0022-247X(84)90173-2Suche in Google Scholar

[10] Feichtinger, H. G.: On new Segal algebra, Monatsh. Math. 92 (1981), 296-289.10.1007/BF01320058Suche in Google Scholar

[11] Fournier, J. J.—Stewart, J.: Amalgams of Lp and ℓq, Bull. Amer. Math. Soc. 13 (1985), 1–21.10.1090/S0273-0979-1985-15350-9Suche in Google Scholar

[12] Ghahramani, F.—Lau, A. T. M.: Weak amenability of certain classes without bounded approximate units, Math. Proc. Camb. Phil. Soc. 138 (2002), 357–371.10.1017/S0305004102005960Suche in Google Scholar

[13] Herz, C.: The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69–82.10.2307/1995427Suche in Google Scholar

[14] Hewit, E.—Ross, K. A.: Abstract Harmonic Analysis I, II, Spinger-Verlage, Berlin, 1970.10.1007/978-3-662-26755-4Suche in Google Scholar

[15] Holland, F.: Harmonic analysis on amalgams of Lp and ℓq, J. London Math. Soc. 2(10) (1975), 295–305.10.1112/jlms/s2-10.3.295Suche in Google Scholar

[16] Jakobsen, M. S.: On a (no longer) new Segal algebra – a review of the Feichtinger algebra, J. Fourier Anal. Appl. 24(6) (2018), 1579–1660.10.1007/s00041-018-9596-4Suche in Google Scholar

[17] Öztop, S.—Spronk, N.: p-Operator space structure on Feichtinger-Figà-Talamanca-Herz Segal algebras, J. Operator Theory 74(1) (2015), 45–74.10.7900/jot.2014apr30.2046Suche in Google Scholar

[18] Rajagopalan, M.: On the Lp-space of a locally compact group, Colloq. Math. 9 (1963), 50–52.10.4064/cm-10-1-49-52Suche in Google Scholar

[19] Ragley, R. W.—Wu, T. S.—Yang, J. S.: On a class topological groups more general than SIN-groups, Pacific J. Math. 117(2) (1985), 209–217.10.2140/pjm.1985.117.209Suche in Google Scholar

[20] Reiter, H.: Classical Analysis and Locally Compact Groups, Oxford Univ. Press, New York and London, 1968.Suche in Google Scholar

[21] Rejali, A.—Sabzali, N.: Amenability and super amenability of some Feichtinger algebras, IIJST 44 (2020), 1101–1110.10.1007/s40995-020-00907-2Suche in Google Scholar

[22] Rudin, W.: Functional Analysis, Mcgraw-Hill Book Company, New york, 1969.Suche in Google Scholar

[23] Runde, V.: Applications of operators spaces to abstract harmonic analysis, Expo. Math. 22 (2004), 317–363.10.1016/S0723-0869(04)80013-6Suche in Google Scholar

[24] Runde, V.: Lectures on Amenability. Lecture Notes in Math., Springer-Verlag, Berlin, 2002.10.1007/b82937Suche in Google Scholar

[25] Samei, E.—Spronk, N.—Stokke, R.: Biflatness and pseudo-amenability of Segal algebras, Canad. J. Math. 62(4) (2010), 845–869.10.4153/CJM-2010-044-4Suche in Google Scholar

[26] Spronk, N.: Operator space structure on Feichtinger's algebras, J. Funt. Anal. 248(1) (2007), 152–174.10.1016/j.jfa.2007.03.028Suche in Google Scholar

[27] Stewart, J.—Watson, S.: Which amalgams are convolution algebras?, Proc. Amer. Math. Soc. 93 (1985), 621–627.10.1090/S0002-9939-1985-0776191-1Suche in Google Scholar

[28] Torres De Squier, M.: Amalgams of Lp and ℓq, PHD Thesis, Mc Master University, 1984.Suche in Google Scholar

Received: 2020-05-16
Accepted: 2020-10-23
Published Online: 2021-10-04
Published in Print: 2021-10-26

© 2021 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular papers
  2. Algebraic structures for pairwise comparison matrices: Consistency, social choices and Arrow’s theorem
  3. Polynomial functions on rings of dual numbers over residue class rings of the integers
  4. Sufficient conditions for p-valent functions
  5. Upper bounds for analytic summand functions and related inequalities
  6. Global structure for a fourth-order boundary value problem with sign-changing weight
  7. On the nonexistence conditions of solution of two-point in time problem for nonhomogeneous PDE
  8. Solvability of a nonlinear three-dimensional system of difference equations with constant coefficients
  9. Properties of critical and subcritical second order self-adjoint linear equations
  10. Korovkin type approximation via statistical e-convergence on two dimensional weighted spaces
  11. Approximation by a new sequence of operators involving Apostol-Genocchi polynomials
  12. Poisson like matrix operator and its application in p-summable space
  13. On the homological and algebraical properties of some Feichtinger algebras
  14. Disjoint topological transitivity for weighted translations generated by group actions
  15. On simultaneous limits for aggregation of stationary randomized INAR(1) processes with poisson innovations
  16. Marshall-Olkin Lindley-Log-logistic distribution: Model, properties and applications
  17. The shifted Gompertz-G family of distributions: Properties and applications
  18. On the testing hypothesis in uniform family of distributions with nuisance parameter
  19. Clarkson inequalities related to convex and concave functions
Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0049/html
Button zum nach oben scrollen