Startseite On the equivalence of various definitions of mixed poisson processes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the equivalence of various definitions of mixed poisson processes

  • Demetrios P. Lyberopoulos EMAIL logo , Nikolaos D. Macheras und Spyridon M. Tzaninis
Veröffentlicht/Copyright: 19. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Under mild assumptions the equivalence of the mixed Poisson process with mixing parameter a real-valued random variable to the one with mixing probability distribution as well as to the mixed Poisson process in the sense of Huang is obtained, and a characterization of each one of the above mixed Poisson processes in terms of disintegrations is provided. Moreover, some examples of “canonical” probability spaces admitting counting processes satisfying the equivalence of all above statements are given. Finally, it is shown that our assumptions for the characterization of mixed Poisson processes in terms of disintegrations cannot be omitted.

Acknowledgement

We are grateful to the anonymous reviewer for her/his careful reading of the manuscript and for a number of very constructive comments which have led to a better and more readable presentation of the paper.

  1. (Communicated by Gejza Wimmer)

References

[1] Albrecht, P. : Über einige Eigenshaften des gemischten Poissonprozesses, Mitt. Ver. Schweiz. Vers. Math. 81 (1981), 241–250.Suche in Google Scholar

[2] Cohn, D. L. : Measure Theory, 2nd edition, Birkhäuser Advanced Texts, 2013.10.1007/978-1-4614-6956-8Suche in Google Scholar

[3] Faden, A. M. : The existence of regular conditional probabilities : Necessary and sufficient conditions, Ann. Probab. 13 (1985), 288–298.10.1214/aop/1176993081Suche in Google Scholar

[4] Fremlin, D. H. : Measure Theory, Vol. 3, Torres Fremlin (Ed.), 2003.Suche in Google Scholar

[5] Fremlin, D. H. : Measure Theory, Vol. 4, Torres Fremlin (Ed.), 2003.Suche in Google Scholar

[6] Grandell, J. : Mixed Poisson Processes, Chapman & Hall, 1997.10.1007/978-1-4899-3117-7Suche in Google Scholar

[7] Huang, W. J. : On the Characterization of Point Processes with the Exchangeable and Markov Properties, Sankhya A 52 (1990), 16–27.Suche in Google Scholar

[8] Lyberopoulos, D. P.—Macheras, N. D. : Some characterizations of mixed Poisson processes, Sankhyā A 74 (2012), 57–79.10.1007/s13171-012-0011-ySuche in Google Scholar

[9] Lyberopoulos, D. P.—Macheras, N. D. : A construction of mixed Poisson processes via disintegrations, Math. Slovaca 63 (2013), 167–182.10.2478/s12175-012-0090-1Suche in Google Scholar

[10] Lyberopoulos, D. P.—Macheras, N. D. : Some characterizations of mixed renewal processes, (2014). https://arxiv.org/pdf/1205.4441v4.pdf.Suche in Google Scholar

[11] Macheras, N. D.—Tzaninis, S.M. : Some characterizations for Markov processes as mixed renewal processes, Math. Slovaca 68(6) (2018), 1477–1494.10.1515/ms-2017-0196Suche in Google Scholar

[12] Schmidt, K. D. : Lectures on Risk Theory, B. G. Teubner, Stuttgart, 1996.10.1007/978-3-322-90570-3Suche in Google Scholar

[13] Schmidt, K. D.—Zocher, M. : Claim number processes having the multinomial property, (2011). http://www.math.tu-dresden.de/sto/schmidt/dsvm/dsvm2003-1.pdfSuche in Google Scholar

[14] Serfozo, R. F. : Conditional Poisson processes, J. Appl. Probab. 9(1) (1972), 288–302.10.2307/3212799Suche in Google Scholar

[15] Serfozo, R. F. : Processes with conditional stationary independent increments, J. Appl. Probab. 9(1) (1972), 303–315.10.2307/3212800Suche in Google Scholar

[16] Zocher, M. : Multivariate Mixed Poisson Processes, Doctoral Thesis, Dresden University of Technology, 2005, http://webdoc.sub.gwdg.de/ebook/dissts/Dresden/Zocher2005.pdfSuche in Google Scholar

Received: 2017-06-19
Accepted: 2018-06-05
Published Online: 2019-03-19
Published in Print: 2019-04-24

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0238/html
Button zum nach oben scrollen